

c20-c-403

7426

BOARD DIPLOMA EXAMINATION, (C-20)

OCTOBER/NOVEMBER-2023

DCE – FOURTH SEMESTER EXAMINATION

QUANTITY SURVEYING-I

Time: 3 Hours]

[Total Marks: 80

PART—A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- **1.** Write the units for the following :
 - (a) Fencing
 - (b) Jungle clearance
 - (c) Sand filling
- 2. State the difference between detailed estimate and abstract estimate.
- **3.** Prepare the total cost of the building by plinth area method with the following data :
 - (a) Plinth area of the building 500 m^2
 - (b) Plinth area rate ₹18,000
 - (c) 25% of building cost is allowed for different provisions of water supply, sanitation, electrical installations, PS and contingencies etc. altogether.
- **4.** Calculate the quantity of cement concrete 1:2:4 rquired for RCC lintel over doors of a residential building. There are 8 doors of size 1.20×2.10 m. Thickness of wall is 300 mm and thickness of lintel is 120 mm and a bearing on either side of door is 180 mm.

/7426

[Contd...

5. From the simple steel truss shown in the figure below, find the steel required for the following :

(a) Principal rafter AC @ 0.110 kN/m

(b) Tie EG @ 0.056 kN/m

- **6.** Write a short note on standard schedule of rates.
- Calculate the cement required in bags for preparing CC 1:5:10 using 40 mm HBG metal for 30 m³ work.
- **8.** Find the cost of material at site for the following :

S.No.	Material	cost at source	Per	Lead	Conveyance charges per km	
					MT	
1	40 mm HBG metal	₹500	1 m ³	35 km	₹9·50 per cu.m	

- **9.** Define the terms lead and lift used in road formation and give their initial values.
- 10. The details of road of 1.50 km length AB are given below. Depth of embankment at A and B are 1.10 m and 2.10 m respectively, side slopes 1:1 and width of road at top is 8.5 m. Calculate the volume of earth work by mean sectional area method.

PART—B 8×5=40

Instructions: (1) Answer all questions.

- (2) Each question carries **eight** marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- 11. (a) Prepare an approximate estimate for a shopping complex of Municipal Corporation with the following data : Plinth area 900 m² per floor Height of each floor 3 m No. of stories GF + 3
 Cubic content rate ₹9,000 per m³

[Contd...

Provisions are as follows :

(i)	Water supply and sanitation	=	6% of building cost
(ii)	Electrification	=	8% of building cost
(iii)	Fluctuations of rates	=	7% of building cost
(iv)	Contractor's profit	=	12% of building cost
(V)	PS and contingencies	=	3% of building cost

(OR)

(b) State and explain the methods of preparing approximate estimtes.

12. (a) Prepare the detailed estimate for the following items of works from the figure 1 :

- (i) Cement concrete (1:4:8) in foundation bed
- (ii) RR masonry in CM 1 : 6 for foundation
- (iii) RCC 1: 1.5: 3 for RCC slab

Fig.1

(OR)

- (b) Prepare the detailed estimate for the following items of works from the figure 1 :
 - (i) Earth work excavation for foundation
 - (ii) Internal plastering in CM 1:4 without deductions
 - (iii) RR masonry in CM 1:6 for basement
- **13.** (a) For the building shown in Fig.2, calculate the quantities of the following items of work :
 - (i) RCC (M20) using HBG metal for all column footings
 - (ii) Brick masonry in CM 1 : 4 without deductions

(OR)

- (b) For the building shown in Fig.2, calculate the quantities of the following items of work :
 - (i) RCC (M20) using HBG metal for all columns
 - (ii) Plastering with CM (1:3) without deductions

/7426

[Contd...

14. (a) Prepare a data sheet and calculate the cost of the items given below :

- (i) Cement concrete (1:4:8) using 40 mm HBG metal -1 m^3
- (*ii*) RR masonry in CM $(1:6) 1 \text{ m}^3$

Materials and labour required for :

Cement concrete $(1:4:8) - 1m^3$ 0.92 m³ – HBG metal

- 0.46 m^3 Sand
- 0.115 m^3 Cement
- 0·20 Nos. Mason
- 3.20 Nos. Mazdoors
- LS sundries

RR masonry in CM $(1:6) - 1 \text{ m}^3$ $1 \cdot 10 \text{ m}^3$ – Rought stone 0.34 m^3 – CM (1:6) 1.80 Nos. – Mason 2.80 Nos. – Mazdoors LS sundries

Lead statement of materials :

S.No.	Materials	Rate (₹)	Per	Lead	Conveyance charges
1	40 mm size HBG metal	550	1 m ³	10 km	₹14 per 1 km
2	Sand	450	1 m ³	8 km	₹12 per 1 km
3	Rough Stone	310	1 m ³	5 km	₹10 per 1 km
4	Cement	6,600	1 ton	At site	

Labour charges per day :

(i)	Mason 1st class	=	₹440
(ii)	Mason 2nd class	=	₹420
(iii)	Mazdoor	=	₹350
(iv)	Hand mixing charges for CM per m^3	=	₹60

(OR)

- *(b)* Prepare the data sheet and calculate the cost for the following items of work :
 - (i) RR masonry with CM (1:8) unit 1 m³ 1.05 m³ rough stone
 0.34 m³ CM (1:8)
 1.8 Nos. Mason
 2.8 Nos. Man mazdoor
 LS sundries

/7426

[Contd...

- (ii) Pointing to RR masonry in CM (1 : 5) unit 10 m²
 0.09 m³ CM (1 : 5)
 2.28 Nos. Mason
 0.5 Nos. Man mazdoor
 1.1 Nos. Woman mazdoor
 - LS sundries

Lead statement of materials :

S.No.	Materials	Rate (₹)	Per	Lead	Conveyance charges
1	Rough stone	330	1 m ³	15 km	₹12 per 1 km
2	Sand	95	1 m ³	10 km	₹13 per 1 km
3	Cement	3500	MT	At site	

Labour charges :

(i)	Mason	=	₹225·00/day
(ii)	Men mazdoor	=	₹180·00/day
(iii)	Women mazdoor	=	₹180·00/day
(iv)	Mixing charges for CM	=	₹40·00/m ³

15. (*a*) A road embankment has the following data :

Chainage (in m)	0	30	60	90	120	150
RL of ground (in m)	30.80	31.25	31.85	32.25	33.00	35.20

Formation level at chainage zero is 33.00 and having a rising gradient of 1 in 120. Top width of the formation is 10.5 m and side slope 2H: 1V. Assuming that the transverse slope of the ground is in level, calculate the volume of earth by

- (i) Trapezoidal formula
- (ii) Prismoidal formula

(OR)

- (b) From the particulars of a reservoir given below, calculate the capacity of a reservoir between the sill level and MWL of the reservoir by
 - (i) Trapezoidal formula
 - * (ii) Prismoidal formula

/7426

[Contd...

S.No.	Level (in m)	Area (m ²)	Particulars
1	* 42.00	1300	Bed of reservoir
2	44.00	2800	-
3	46.00	4200	Sill level of sluice
4	48.00	6500	—
5	50.00	9500	_
6	52.00	12000	FTL
7	54.00	15000	MWL

PART-C

 $10 \times 1 = 10$

Instructions : (1) Answer the following question.

- (2) The question carries **ten** marks.
- 16. Prepare an estimate for the road from chainage 0 mts to 270 mts without turfing the slopes. Adopt rate of earth work in cutting and filling at ₹19 per m³. The formation width of proposed road is 12 m. Side sloped 1½ : 1 for cutting and 2 : 1 for filling. The road formation has a uniform falling gradient of 1 in 200. At 0 m chainage the formation level is at ground level. RL of ground level at different chainages are as follows :

Chainage (in m)	0	30	60	120	150	180	210	240	270
RL of ground (in m)	118.60	199.25	199.40	118.85	118.50	117.25	116.80	117.15	117.20

 $\star\star\star$