с20-ес-305

7243

BOARD DIPLOMA EXAMINATION, (C-20)

NOVEMBER/DECEMBER-2022

DECE – THIRD SEMESTER EXAMINATION

NETWORK ANALYSIS

Time : 3 hours]

[Total Marks: 80

PART-A

3×10=30

- **Instructions :** (1) Answer **all** questions.
 - (2) Each question carries **three** marks.
 - (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
 - 1. Draw the dual of the given network :

- **2.** State reciprocity theorem.
- 3. Define the terms Branch, Junction and Mesh in circuits.
- 4. Find the current I in the circuit shown below :

/7243

[Contd...

www.manaresults.co.in

- 5. Give formula for lower cut-off and upper cut-off frequencies.
- **6.** A *RLC* series circuit excited by a 10 v sinusoidal source resonate at a frequency of 50 Hz. If the bandwidth is 5 Hz, what will be the voltage across capacitor?
- **7.** Write Laplace transforms of (*a*) unit step function, (*b*) exponential function and (*c*) sine function.
- **8.** Find the Laplace transform of $(t+2)^2 e^t$.
- **9.** Find the final value of the given function whose Laplace transform is $I(S) = \frac{S+6}{S(S+3)}$.
- 10. Define low pass filter and high pass filter.

Instructions : (1) Answer **all** questions.

- (2) Each question carries eight marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- **11.** (*a*) Solve for mesh currents using Cramer's rule for the given network below :

/7243

[Contd...

(OR)

*

(b) Compute the voltage across 6Ω for the circuit shown below :

12. (a) Find the power loss in the 1Ω resistor of the circuit shown below using Thevenin's theorem.

(**OR**)

(b) Find the current through 2Ω resistor by using superposition theorem.

[Contd...

www.manaresults.co.in

3

/7243

*

*

13. (a) A circuit, having a resistance of 4.0Ω with an inductance of 0.5 H and a variable capacitance in series, is connected across a 100 V, 50 Hz supply. Calculate (i) the capacitance required to attain resonance; (ii) voltages across the inductance and the capacitance at resonance; (iii) the Q factor of the circuit.

(OR)

- (b) A coil, of resistance R and inductance L, is connected in series with a capacitor C across a variable-frequency source. The voltage is maintained constant at 300 mV and the frequency is varied until a maximum current of 5 mA flows through the circuit at 6 kHz. If, under these conditions, the Q factor of the circuit is 105, calculate : (a) the voltage across the capacitor; (b) the values of R, L and C.
- 14. (a) Explain dc response of an RL circuit.

(**OR**)

- (b) Explain second shifting property with one example.
- **15.** (a) Explain π type attenuators with circuit diagram.

(**OR**)

(b) Design a constant k low pass filter to match a line having characteristic impedance of 500Ω and to pass frequency up to 5 kHz.

Instructions: (1) Answer the following question.

*

- (2) The question carries **ten** marks.
- (3) Answer should be comprehensive and criterion for valuation is the content but not the length of the answer.

16. If $V_A - V_B = 6$ V then $V_C - V_D$ is :

 $\star \star \star$

AA22-PDF

www.manaresults.co.in

 $10 \times 1 = 10$