7243

BOARD DIPLOMA EXAMINATION, (C-20)

NOVEMBER/DECEMBER-2022

DECE - THIRD SEMESTER EXAMINATION

NETWORK ANALYSIS
Time : 3 hours]
[Total Marks : 80

PART—A

Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Draw the dual of the given network :

2. State reciprocity theorem.
3. Define the terms Branch, Junction and Mesh in circuits.
4. Find the current I in the circuit shown below :

1
[Contd...
5. Give formula for lower cut-off and upper cut-off frequencies.
6. A RLC series circuit excited by a 10 v sinusoidal source resonate at a frequency of 50 Hz . If the bandwidth is 5 Hz , what will be the voltage across capacitor?
7. Write Laplace transforms of (a) unit step function, (b) exponential function and (c) sine function.
8. Find the Laplace transform of $(t+2)^{2} e^{t}$.
9. Find the final value of the given function whose Laplace transform is $I(S)=\frac{S+6}{S(S+3)}$.
10. Define low pass filter and high pass filter.

PART—B

Instructions : (1) Answer all questions.
(2) Each question carries eight marks.
(3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
11. (a) Solve for mesh currents using Cramer's rule for the given network below :

(OR)

(b) Compute the voltage across 6Ω for the circuit shown below :

12. (a) Find the power loss in the 1Ω resistor of the circuit shown below using Thevenin's theorem.

(OR)

(b) Find the current through 2Ω resistor by using superposition theorem.

13. (a) A circuit, having a resistance of 4.0Ω with an inductance of 0.5 H and a variable capacitance in series, is connected across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (i) the capacitance required to attain resonance; (ii) voltages across the inductance and the capacitance at resonance; (iii) the Q factor of the circuit.

(OR)

(b) A coil, of resistance R and inductance L, is connected in series with a capacitor C across a variable-frequency source. The voltage is maintained constant at 300 mV and the frequency is varied until a maximum current of 5 mA flows through the circuit at 6 kHz . If, under these conditions, the Q factor of the circuit is 105, calculate : (a) the voltage across the capacitor; (b) the values of R, L and C.
14. (a) Explain dc response of an $R L$ circuit.

(OR)

(b) Explain second shifting property with one example.
15. (a) Explain π type attenuators with circuit diagram.

(OR)

(b) Design a constant k low pass filter to match a line having characteristic impedance of 500Ω and to pass frequency up to 5 kHz .

Instructions : (1) Answer the following question.
(2) The question carries ten marks.
(3) Answer should be comprehensive and criterion for valuation is the content but not the length of the answer.
16. If $V_{A}-V_{B}=6 V$ then $V_{C}-V_{D}$ is :

