C20-EE-CHPP-102

7035

BOARD DIPLOMA EXAMINATION, (C-20)

JUNE/JULY-2022

DEEE - FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer all questions.

- (2) Each question carries three marks.
- 1. A function f is defined by $f \square x \square \square x^2 \square$ then find (a) $f \square \square$, (b) $f \square$ and (c) $f \square$
- 2. Resolve $\frac{1}{|x|}$ into partial fractions.
- 3. If $A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -3 & 1 \end{bmatrix}$, compute 3A 4B.
- 4. If $\tan A = \frac{5}{6}$ and $\tan B = \frac{1}{11}$ then show that $A + B = \frac{\pi}{4}$.
- 5. Show that $\frac{1+\cos 2A}{\sin 2A} = \cot A$.
- 6. Find the modulus and additive inverse of $z = 1 + i\sqrt{3}$.
- 7. Find the slope of line joining two points (1, -1) and (2, 1).

/7035 1 [Contd...

- 8. Evaluate $\lim_{\alpha \to 0} \frac{\sin 3\alpha}{\alpha}$.
- 9. If $y = \sin 2x = 0$ then find $\frac{dy}{dx}$.
- 10. If $u = x^2 + 2xy + y^2$ then find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.

PART—B

8×5=40

Instructions: (1) Answer all questions.

- (2) Each question carries eight marks.
- 11. (a) If "w" is the cube root of unity then show that $\begin{vmatrix} 1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w \end{vmatrix} = 0$.

(OR)

(b) Solve the following system of linear equations by using Cramer's Rule:

$$x + 2y + 3z = 6,2x + 4y + z = 7,3x + 2y + 3z = 8$$

12. (a) Show that $\frac{\sin 8A + \sin 6A}{\cos 8A + \cos 6A} = \tan 7A$.

(OR)

(b) Show that $\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \tan^{-1}\left(\frac{1}{2}\right)$.

/7035

2

- 13. (a) Solve $2\sin^2 \theta + 3\cos \theta 3 = 0$.
 - (b) In a $\square ABC$, show that $\cot A \square \cot B \square \cot C \square \frac{a^2 \square b^2 \square c^2}{4 \square}$.
- 14. (a) Find the equation of the circle having (4, 2) and (1, 5) as the extremities of the diameter.

(OR)

- (b) Find the equation of the parabola whose focus is at (1, -1) and directrix 3x + 4y + 5 = 0.
- 15. (a) Find $\frac{dy}{dx}$, if $y = e^x \tan x + \frac{1 + \sin x}{1 \sin x}$.
 - (b) If $y = a \cdot 1 = \cos = 1$ and $x = a \cdot 1 = \sin = 1$ then find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$.

PART—C 10×1=10

- Instructions: (1) Answer the following questions.
 - (2) The question carries 10 marks.
 - 16. Find the lengths of the tangent, normal, sub-tangent and subnormal to the curve $x^2 + y^2 6x 2y + 5 = 0$ at the point (2, -1).

* * *

/7035 3 AA22-PDF