7035

BOARD DIPLOMA EXAMINATION, (C-20)
SEPTEMBER/OCTOBER—2021
DEEE - FIRST YEAR EXAMINATION
ENGINEERING MATHEMATICS - I
Time : 3 hours]

PART—A
$3 \times 10=30$

Instructions: (1) Answer all questions.
(2) Each question carries three marks.

1. If $f: \square \rightarrow \square$ is defined by $f(x)=3 x-5$, then prove that $f(x)$ is onto function.
2. Resolve $\frac{x}{(x-1)(x-3)}$ into partial fractions.
3. If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 4 \\ -1 & 2\end{array}\right]$, then find $A B$ and $B A$ and also show that $A B \neq B A$.
4. Prove that $\frac{\cos 12^{\circ}+\sin 12^{\circ}}{\cos 12^{\circ}-\sin 12^{\circ}}=\tan 57^{\circ}$
5. Prove that $\frac{1-\cos 2 \theta}{\sin 2 \theta}=\tan \theta$
6. Find the addfive and multiplicative inverses of the complex number $4-5 i$
7. Find the acute angle between the lines $2 x+y+4=0$ and $y-3 x=7$
8. Evaluate $\lim _{x \rightarrow 0} \frac{\tan 7 x}{x}$
9. Find the derivative of $(2 \sqrt{x}+3 \operatorname{cosec} x+4 \tan x)$ w.r.t. ' x '
10. Find $\frac{d y}{d x}$, if $y=t^{2}, x=2 t$
PART—B

Instructions: (1) Answer all questions.
(2) Each question carries eight marks.
11. (a) Find the inverse of the matrix $\left[\begin{array}{ccc}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$

OR
(b) Solve the following system of linear equations using Cramer's Rule :

$$
x+2 y+3 z=6,3 x-2 y+4 z=5 \text { and } x-y-z=-1
$$

12. (a) Prove that $\sin ^{2} A+\sin ^{2}\left(60^{\circ}+A\right)+\sin ^{2}\left(60^{\circ}-A\right)=\frac{3}{2}$

OR
(b) Prove that $\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{3}{5}\right)-\tan ^{-1}\left(\frac{8}{19}\right)=\frac{\pi}{4}$
13. (a) Solve thê equation $\sin 6 \theta \cos 2 \theta-\sin 5 \theta \cos \theta=0$

OR
(b) In a $\triangle A B C$, show that $\frac{\cot \frac{A}{2}+\cot { }^{B}+\frac{2+\cot }{C} \overline{\frac{2}{2}}}{\cot A+\cot }=\frac{(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}$
14. (a) Find the equation of the circle passing through the points $(1,1),(2,-1)$ and $(3,2)$

OR
(b) Find the equation of the rectangular hyperbola whose focus is the point $(-1,-3)$ and directrix is the line $2 x+y+1=0$
15. (a) Find the derivative of $x^{3} \log x+\frac{1-x}{1+x}+e^{\sin x}$ w.r.t. ' x '

OR
(b) Find all first and second order partial derivatives of $u=x^{3}-8 x y+y^{3}$ and verify that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$

> PART—C

Instructions: (1) Answer the following question.
(2) It carries ten marks.
16. One end of a ladder 17 ft . long is leaning against a vertical wall. If the foot of the ladder is pulled away from the wall at the rate of $3 \mathrm{ft} / \mathrm{min}$., how fast is the top of the ladder descending when the foot of the ladder is 8 ft . from the wall?

