7249

BOARD DIPLOMA EXAMINATION, (C-20)

JUNE/JULY-2022

DEEE – THIRD SEMESTER EXAMINATION

ELECTRICAL CIRCUITS

Time : 3 hours]

[Total Marks: 80

PART—A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- 1. State Kirchhoff's Laws.
- **2.** Three resistances of 2Ω , 4Ω and 6Ω are connected in Star. Find the equivalent delta connected resistances.
- **3.** State Thevenin's theorem.
- **4.** Define *(i)* instantaneous value, *(ii)* time period and *(iii)* frequency of an alternating quantity.
- 5. Explain the terms phase and phase difference.
- 6. Derive an expression for RMS value of square wave.
- 7. Prove that the average power consumed in a pure Inductor is zero.
- **8.** A pure capacitor takes a current of 25 A from 200 V, 50 Hz supply. Find the capacitance of a capacitor.
- **9.** State the relation between line and phase values of delta connected system.
- **10.** Derive the relation for line voltage and phase voltage in case of star connected system.

/7249

[Contd...

Instructions : (1) Answer **all** questions.

/7249

- (2) Each question carries **eight** marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- **11.** (a) Find the power loss in 1Ω resistor in the circuit shown in figure below by using Star-Delta transformation.

(OR)

- (b) Explain the Kirchhoff's Voltage law with a suitable example.
- **12.** (a) Determine the value of R_L and maximum power in the circuit shown in figure below for maximum power transfer.

[Contd...

(b) Find the voltage across 2Ω resistor in the circuit shown in figure below by using superposition theorem.

(**OR**)

13. (a) A coil of resistance 6Ω and an inductance of 0.03 H is connected across of 50 V, 60 Hz supply. Find the (i) current, (ii) phase angle, (iii) power factor and (iv) power.

(**OR**)

- (b) Two impedances $(10 + j15)\Omega$ and $(6 j8)\Omega$ are connected in parallel across 230 V, 50 Hz supply. Calculate the total current and phase angle.
- 14. (a) A series *R-L-C* circuit, has a resistance of 5Ω , an inductance of 0.5 H and capacitance of $10 \ \mu\text{F}$ is connected across a 200 V, 50 Hz supply. Find the input current and voltage across each element.

(OR)

(b) A *R-L-C* series circuit consists of $R = 10\Omega$, L = 25 mH and $C = 100 \mu F$ connected across 200 V supply. Calculate (*i*) Resonant frequency, (*ii*) impedance at resonance, (*iii*) current at resonance and (*iv*) Q-factor.

/7249

[Contd...

15. (a) Three coils having a resistance of 20Ω and an inductance of 0.05H are connected in star across 3-phase 400V supply. Determine the line current and total power.

(OR)

(b) A star connected alternator supplied a delta connected load. The load impedance of each branch $(6 + j8)\Omega$. The line voltage is 225 V. Determine *(i)* current in each phase of the load, *(ii)* current in each phase of the alternator, *(iii)* power drawn by the load and *(iv)* load power factor.

PART—C 10×1=10

Instructions : (1) Answer the following question.

- (2) The question carries **ten** marks.
- (3) Answer should be comprehensive and criterion for valuation is the content but not the length of the answer.
- **16.** The power in 3-phase circuit can be measured with two watt meters only. Justify.

 $\star \star \star$