7249

BOARD DIPLOMA EXAMINATION, (C-20)

NOVEMBER/DECEMBER—2022

DEEE - THIRD SEMESTER EXAMINATION

ELECTRICAL CIRCUITS

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- 1. Define branch, junction and loop in an electric circuit.
- **2.** When three resistances of 4 Ω , 6 Ω , and 10 Ω are connected in star, find the equivalent delta connected resistances.
- 3. State maximum power transfer theorem.
- **4.** Define (i) Average value and (ii) RMS value of an alternating quantity.
- **5.** Derive an expression for average value of full wave rectified sine wave.
- **6.** Convert the following quantities from polar to rectangular or vice-versa:
 - (i) 100∠30
 - (ii) 8 + j6
 - (iii) 5 j4

/7249 1 [Contd...

- **7.** Prove that the average power consumed in a pure capacitor is zero.
- **8.** A pure inductive coil takes a current of 40 A from, 250 V, 50 Hz supply. Find the inductance of the coil.
- **9.** Define the term poly-phase.
- **10.** Show that the line voltage in 3-phase star connected system is equal to $\sqrt{3}$ times the phase voltage.

PART—B 8×5=40

Instructions: (1) Answer **all** questions.

- (2) Each question carries **eight** marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- 11. (a) Find the current through 15 Ω resistor in the circuit shown in the figure by applying Kirchhoff's Laws.

(b) Find the equivalent resistance between X and Y in the resistive network shown in the figure by using Star-Delta transformation.

/7249 2 [Contd...

12. (a) Find the voltage across 4 Ω resistor in the circuit shown in the figure by using superposition theorem.

(b) Find the current through 10 Ω resistor of the circuit shown in the figure by using Norton's theorem.

13. (a) A pure resistor is connected in series with a capacitor across a 250 V, 50 Hz supply. If the power absorbed by the resistor is 400 W at 160 V, find the resistance and capacitance.

(OR)

(b) A coil having a resistance of 20 Ω and an inductance of 0.07 H is connected in parallel with a capacitor of 60 μ F, which is in series with a resistor of 50 Ω . Calculate the total current and phase angle when this combination is connected across 200 V, 50 Hz supply.

14. (a) A resistance of 12 Ω, an inductance of 0·15 H and a capacitance of 100 μF are connected in series across a 200 V, 50 Hz supply. Calculate (i) Impedance, (ii) Current, (iii) Power factor and (iv) Power consumed.

(OR)

- (b) A coil of resistance 2 Ω and inductance of 0.01 H is connected in series with a capacitor across 200 V supply. Find the value of capacitance in order that maximum current flow occurs at a frequency of 50 Hz. Also find (i) voltage across the coil and (ii) voltage across capacitor.
- **15.** (a) A balanced 3-phase delta connected load of 11 kW takes a lagging current of 15 A with a line voltage of 500 V. Find the circuit constants of the load per phase.

(OR)

(b) Explain the effect of load power factor on wattmeter readings in two-wattmeter method.

PART—C $10 \times 1 = 10$

Instructions: (1) Answer the following question.

- (2) The question carries ten marks.
- (3) Answer should be comprehensive and criterion for valuation is the content but not the length of the answer.
- **16.** Suggest the suitable alternator to give a terminal voltage of 230 V, if the voltage across each phase is 132.8 V. Justify, if this alternator is supplied to a delta connected load of $(10 + j8) \Omega$. Find (a) current in each phase of the load, (b) current in each phase of the alternator, (c) power factor of the load and (d) power drawn by the load.

