C2O-EE-305

7249
 BOARD DIPLOMA EXAMINATION, (C-20) NOVEMBER/DECEMBER-2022
 DEEE - THIRD SEMESTER EXAMINATION
 ELECTRICAL CIRCUITS

Time : 3 hours]
[Total Marks : 80

PART—A
$3 \times 10=30$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define branch, junction and loop in an electric circuit.
2. When three resistances of $4 \Omega, 6 \Omega$, and 10Ω are connected in star, find the equivalent delta connected resistances.
3. State maximum power transfer theorem.
4. Define (i) Average value and (ii) RMS value of an alternating quantity.
5. Derive an expression for average value of full wave rectified sine wave.
6. Convert the following quantities from polar to rectangular or vice-versa:
(i) $100 \angle 30$
(ii) $8+j 6$
(iii) $5-j 4$
7. Prove that the average power consumed in a pure capacitor is zero.
8. A pure inductive coil takes a current of 40 A from, $250 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find the inductance of the coil.
9. Define the term poly-phase.
10. Show that the line voltage in 3-phase star connected system is equal to $\sqrt{ } 3$ times the phase voltage.

PART—B

$$
8 \times 5=40
$$

Instructions : (1) Answer all questions.
(2) Each question carries eight marks.
(3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
11. (a) Find the current through 15Ω resistor in the circuit shown in the figure by applying Kirchhoff's Laws.

(b) Find the equivalent resistance between X and Y in the resistive network shown in the figure by using Star-Delta transformation.

12. (a) Find the voltage across 4Ω resistor in the circuit shown in the figure by using superposition theorem.

(b) Find the current through 10Ω resistor of the circuit shown in the figure by using Norton's theorem.

13. (a) A pure resistor is connected in series with a capacitor across a $250 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. If the power absorbed by the resistor is 400 W at 160 V , find the resistance and capacitance.

(OR)

(b) A coil having a resistance of 20Ω and an inductance of 0.07 H is connected in parallel with a capacitor of $60 \mu \mathrm{~F}$, which is in series with a resistor of 50Ω. Calculate the total current and phase angle when this combination is connected across 200 V , 50 Hz supply.
14. (a) A resistance of 12Ω, an inductance of 0.15 H and a capacitance of $100 \mu \mathrm{~F}$ are connected in series across a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (i) Impedance, (ii) Current, (iii) Power factor and (iv) Power consumed.

(OR)

(b) A coil of resistance 2Ω and inductance of 0.01 H is connected in series with a capacitor across 200 V supply. Find the value of capacitance in order that maximum current flow occurs at a frequency of 50 Hz . Also find (i) voltage across the coil and (ii) voltage across capacitor.
15. (a) A balanced 3-phase delta connected load of 11 kW takes a lagging current of 15 A with a line voltage of 500 V . Find the circuit constants of the load per phase.

(OR)

(b) Explain the effect of load power factor on wattmeter readings in two-wattmeter method.

> PART—C

$$
10 \times 1=10
$$

Instructions : (1) Answer the following question.
(2) The question carries ten marks.
(3) Answer should be comprehensive and criterion for valuation is the content but not the length of the answer.
16. Suggest the suitable alternator to give a terminal voltage of 230 V , if the voltage across each phase is $132 \cdot 8 \mathrm{~V}$. Justify, if this alternator is supplied to a delta connected load of $(10+j 8) \Omega$. Find (a) current in each phase of the load, (b) current in each phase of the alternator, (c) power factor of the load and (d) power drawn by the load.

