7444

BOARD DIPLOMA EXAMINATION, (C-20)

MAY-2023

DEEE - FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS—III

Time: 3 Hours]

[Total Marks: 80

PART—A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Solve
$$(D^2 - 3D + 2)y = 0$$
, where $D = \frac{d}{dx}$.

2. Solve
$$(D^2 - 1)y = 0$$
, where $D = \frac{d}{dx}$.

- **3.** Find the particular integral of the differential equation $(D^2 + 9)y = e^x$.
- **4.** Find the particular integral of the differential equation $(D^2 4)y = \cos 4x$.

Find $L\{e^{-2t} + e^{2t}\}$ 5.

6. Find $L\{2\cos 3t + 3\sin 2t\}$

7. Find
$$L^{-1}\left\{\frac{3}{s-2} + \frac{4}{s^2+4}\right\}$$

- **8.** Write the formulae for Fourier coefficients of f(x) in the interval $(0, 2\pi)$.
- **9.** Find the value of a_0 in the Fourier expansion of $f(x) = e^{ax}$ in $(-\pi, \pi)$.
- **10.** Write the value of b_1 in the Fourier series of $f(x) = \pi$ in $(0, 2\pi)$.
- /7444 www.manaresults.co.in [Contd...

*

- (2) Each question carries **eight** marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.

11. (a) Solve
$$(D^3 - 2D^2 - D + 2)y = 0$$
, where $D \equiv \frac{d}{dx}$.

(OR)

(b) Solve
$$(D^2 + 2D - 8)y = e^{-2x}$$
, where $D \equiv \frac{d}{dx}$.

12. (a) Solve
$$(D^2 - 4D + 4)y = 5\sin 2x$$
, where $D = \frac{d}{dx}$.

(OR)

(b) Solve
$$(D^2 + 2D + 1)y = 2x$$
 where $D \equiv \frac{d}{dx}$.

13. (a) Evaluate
$$L\{e^t(t+1)^2\}$$

(OR)

(b) Evaluate $L\{t \cos 4t\}$

14. (a) Evaluate $L\left\{\frac{\sin 4t}{t}\right\}$

(OR)

(b) Using Laplace transform, evaluate
$$\int_{0}^{\infty} e^{-2t} \cos t \, dt$$
.

15. (a) Find
$$L^{-1}\left\{\frac{s}{(s-3)^2+1}\right\}$$

/7444

(OR)

(b) Find $L^{-1}\left\{\frac{1}{(s-1)(s+2)}\right\}$

www.manaregults.co.in

Instructions : (1) Answer the following question.

- (2) The question carries **ten** marks.
- (3) Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **16.** Obtain half-range Fourier sine and cosine series for f(x) = x in $[0, \pi]$

*