Code No: 111AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.Tech I Year Examinations, May - 2018 MATHEMATICS - I** (Common to CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MCT, ETM, MMT, AE, AME, MIE, PTM, CEE, AGE)

Time: 3 hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

- If A and B are square symmetric matrices of same order then prove that AB + BA is 1.a)symmetric. [2]
 - If one of Eigen vectors of $\begin{bmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ is $\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, then find the corresponding Eigen value. b)
 - [3] Find the value of c in Roll's theorem for $f(x) = \sin x$ in $(0, \pi)$. c) [2]
 - Find the stationary points of the following functions $x^3 + 3xy^2 3x^2 3y^2 + 4$. d) [3]
 - Evaluate $\int_{0}^{\infty} x^{2} e^{-x^{4}} dx$ Evaluate $\int_{0}^{2} \int_{0}^{x^{2}} y dx dy$ e) [2]
 - f) [3]
 - Solve the differential equation $(D^2 4D + 13)y = 0$ [2] g)
 - Evaluate $\frac{1}{D^2-1}(x^2+x)$. h) [3]
 - i) Find $L[te^t]$ [2]
 - Find f(t), if $L[f(t)] = \frac{1}{(s-1)^2}$. Hence find $L^{-1} \left| \frac{1}{s(s-1)^2} \right|$ using any theorem of Laplace j) transforms. [3]

PART-B

(50 Marks)

- Test for the consistency and hence solve the system. 2.a) x + y + z = 6, x - y + 2z = 5, 3x + y + z = 8, 2x - 2y + 3z = 7If $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$ the Eigen values of a non singular matrix A of order 'n' then prove b)
 - that the Eigen values of A^{-1} are $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \frac{1}{\lambda_3}, \dots, \frac{1}{\lambda_n}$ [5+5]
 - OR

www.manaresults.co.in

R13

(25 Marks)

Max. Marks: 75

- 3. Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 4xy 2yz + 4xz$ by orthogonal reduction to the canonical form. [10]
- 4.a) Verify Lagranges mean value theorem for $f(x) = \log_e x \ln [1, e]$. b) Find the maximum and minimum values of $x = \frac{a^3}{a^3} + \frac{a^3}{a^3}$

b) Find the maximum and minimum values of
$$xy + \frac{x}{x} + \frac{x}{y}$$
. [5+5]
OR

5. If
$$x + y = 2e^{\theta} \cos \phi$$
, $x - y = 2ie^{\theta} \sin \phi$, find $\frac{\partial(x, y)}{\partial(\theta, \phi)}$ and verify that $JJ^1 = 1$ [10]

6.a) Evaluate
$$\int_{0}^{a} x^{4} \sqrt{a^{2} - x^{2}} dx$$

b) Change the order of integration and evaluate
$$\int_{0}^{a} \int_{x^{2}/a}^{2a-x} xy^{2} dy dx$$
. [5+5]
OR

7.a) Prove that
$$\int_{0}^{1} (1-x^{n})^{1/n} dx = \frac{\frac{1}{n} \left(\Gamma(\frac{1}{n}) \right)}{2\Gamma(\frac{2}{n})}$$

b) Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} (x^2 + y^2) dx dy$$
 by changing into polar coordinates. [5+5]

- 8.a) Find the orthogonal Trajectory of the family of $ay^2 = x^3$.
 - b) Solve the differential equation $(D^2+9)y = \cos 3x + \sin 2x$ [5+5] OR
- 9.a) If a population is increasing exponentially at the rate of 2% per year. What will be the percentage increase over a period of 10 years?

b) Solve by the method of variation of Parameters
$$\frac{d^2 y}{dx^2} + y = \sec x$$
 [5+5]

10.a) Evaluate
$$\int_{0}^{\infty} \frac{\sin t}{t} dt$$

b) Find the inverse Laplace transform of $\log\left(\frac{s+1}{s-1}\right)$ [5+5] OR

11. Solve the differential equation $(D^2 + D)y = t^2 + 2t$, using Laplace transform given that

$$y(0) = 4, \ \frac{dy(0)}{dt} = 2.$$
 [10]

---00000----

www.manaresults.co.in