JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year Examinations, May - 2018
 MATHEMATICS - I

(Common to CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MCT, ETM, MMT, AE, AME, MIE, PTM, CEE, AGE)

Time: $\mathbf{3}$ hours

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) If A and B are square symmetric matrices of same order then prove that $A B+B A$ is symmetric.
b) If one of Eigen vectors of $\left[\begin{array}{lll}2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3\end{array}\right]$ is $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$, then find the corresponding Eigen value.
c) Find the value of c in Roll's theorem for $f(x)=\sin x$ in $(0, \pi)$.
d) Find the stationary points of the following functions $x^{3}+3 x y^{2}-3 x^{2}-3 y^{2}+4$.
e) Evaluate $\int_{0}^{\infty} x^{2} e^{-x^{4}} d x$
f) Evaluate $\int_{0}^{2} \int_{0}^{x^{2}} y d x d y$
g) Solve the differential equation $\left(D^{2}-4 D+13\right) y=0$
h) Evaluate $\frac{1}{D^{2}-1}\left(x^{2}+x\right)$.
i) Find $L\left[t e^{t}\right]$
j) Find $\mathrm{f}(\mathrm{t})$, if $L[f(t)]=\frac{1}{(s-1)^{2}}$. Hence find $L^{-1}\left[\frac{1}{s(s-1)^{2}}\right]$ using any theorem of Laplace transforms.

PART-B

(50 Marks)
2.a) Test for the consistency and hence solve the system.

$$
x+y+z=6, x-y+2 z=5,3 x+y+z=8,2 x-2 y+3 z=7
$$

b) If $\lambda_{1}, \lambda_{2}, \lambda_{3} \ldots \lambda_{n}$ the Eigen values of a non singular matrix A of order ' n ' then prove that the Eigen values of A^{-1} are $\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \frac{1}{\lambda_{3}} \ldots \frac{1}{\lambda_{n}}$
3. Reduce the quadratic form $6 x^{2}+3 y^{2}+3 z^{2}-4 x y-2 y z+4 x z$ by orthogonal reduction to the canonical form.
4.a) Verify Lagranges mean value theorem for $f(x)=\log _{e} x$ in $[1, e]$.
b) Find the maximum and minimum values of $x y+\frac{a^{3}}{x}+\frac{a^{3}}{y}$.

OR

5. If $x+y=2 e^{\theta} \cos \phi, x-y=2 i e^{\theta} \sin \phi$, find $\frac{\partial(x, y)}{\partial(\theta, \phi)}$ and verify that $J J^{1}=1$
6.a) Evaluate $\int_{0}^{a} x^{4} \sqrt{a^{2}-x^{2}} d x$
b) Change the order of integration and evaluate $\int_{0}^{a} \int_{x^{2} / a}^{2 a-x} x y^{2} d y d x$.

OR
7.a) Prove that $\int_{0}^{1}\left(1-x^{n}\right)^{1 / n} d x=\frac{\frac{1}{n}\left(\Gamma\left(\frac{1}{n}\right)\right)^{2}}{2 \Gamma\left(\frac{2}{n}\right)}$
b) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}}\left(x^{2}+y^{2}\right) d x d y$ by changing into polar coordinates.
8.a) Find the orthogonal Trajectory of the family of $a y^{2}=x^{3}$.
b) Solve the differential equation $\left(D^{2}+9\right) y=\cos 3 x+\sin 2 x$

OR
9.a) If a population is increasing exponentially at the rate of 2% per year. What will be the percentage increase over a period of 10 years?
b) Solve by the method of variation of Parameters $\frac{d^{2} y}{d x^{2}}+y=\sec x$
10.a) Evaluate $\int_{0}^{\infty} \frac{\sin t}{t} d t$
b) Find the inverse Laplace transform of $\log \left(\frac{s+1}{s-1}\right)$

OR

11. Solve the differential equation $\left(D^{2}+D\right) y=t^{2}+2 t$, using Laplace transform given that $y(0)=4, \frac{d y(0)}{d t}=2$.
