Code No: 111AB JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech I Year Examinations, June - 2014 MATHEMATICS-I (Common to all Branches)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

1.a)	Define an orthogonal matrix.	[2m]
b)	When a quadratic form is said to be	[3m]
	i) Positive definite ii) Negative definite iii) Positive semi def	inite.
c)	State Rolle's Theorem.	[2m]
d)	When a function $f(x, y)$, with usual notations of partial differential coefficients	efficients,
	will have maximum, minimum and can't be decided?	[3m]
e)	In evaluating $\iint_{R} f(x, y) dx dy$ bounded by the coordinate axes	and the
	line $\frac{x}{a} + \frac{y}{b} = 1$, find the limits of x and y.	[2m]
f)	Find the limits of integration after changing the order of in	ntegration
	$of \int_0^1 \int_{x^2}^{2-x} xy dy dx .$	[3m]
g)	State Law of Natural Growth.	[2m]
h)	Solve the differential equation $(D^2 - 3D + 4)y = 0$.	[3m]
i)	If $L[f(t)] = \frac{1}{(s-1)^2}$, then find $L^{-1}\left[\frac{1}{s(s-1)^2}\right]$ using any theorem of	Laplace
	transforms.	[2m]
j)	Find $L(5\sin t + 2\sin 3t)$.	[3m]

PART-B

	Using Cayley Hamilton theorem find the inverse of the matrix	2	-1	1]	
2.					
		1	-1	2	

OR

3. Find the Eigen values and the corresponding Eigen vectors of the matrix $\begin{bmatrix} 1 & 1 & 3 \end{bmatrix}$

 $\begin{bmatrix} 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ www.ManaResults.co.in

4. Expand $e^x \sin y$ in powers of x and y.

OR

OR

- 5. Find the Maximum or minimum values of $f = 3x^4 2x^3 6x^2 + 6x + 1$.
- 6.a) Evaluate $\iint_{R} r^{3} dr d\theta$ over the area included between the circles $r = 2\sin\theta$ and $r = 4\sin\theta$.
 - b) Evaluate $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} dx dy dz$

7.a) Evaluate
$$\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^{2} + y^{2}) dx dy$$

- b) Evaluate $\iint_{V} (xy + yz + zx) dx dy dz$, where V is the region of space bounded by planes by x=0, x=1, y=0, y=2 and z=0, z=3.
- 8. If a voltage of 20 cos5t is applied to a series circuit consisting of 10 ohm resistor and 2 henry inductor, determine the current at any time t.

OR

- 9.a) Solve the differential equation $(D^2 2D + 1)y = x^2e^{3x} \sin 2x + 3$.
 - b) Bacteria in a culture grow exponentially so that the initial number has doubled in 3 hours. How many times, the initial number will be present after 9 hours.
- 10. Using Laplace transform solve the differential equation $\frac{d^2x}{dt^2} 2\frac{dx}{dt} + x = e^t$, given that x(0) = 2, x'(0) = -1.

OR

- 11.a) Find the inverse Laplace transform of $\log\left(1+\frac{16}{s^2}\right)$.
 - b) Find the Laplace transform of f(t) where $f(t) = \begin{cases} t, \ 0 < t < \frac{1}{2} \\ t-1, \ \frac{1}{2} < t < 1 \\ 0, \ t > 1 \end{cases}$

www.ManaResults.co.in