JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year Examinations, November/December - 2015

MATHEMATICS-I
(Common to all Branches)
Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

> PART- A
(25 Marks)
1.a) Define Elementary matrix with an example.
b) Prove that an orthogonal set of vectors is linearly independent.
c) Check whether the functions $u=e^{x} \sin y, v=e^{x} \cos y$ are functional dependent or not. If so find the relation between them.
d) Find the stationary points of $u(x, y)=\sin x \sin y \sin (x+y)$ where $0<x, y<\pi$.
e) Evaluate $\int_{0}^{\infty} a^{-b x^{2}} d x$.
f) Evaluate $\iint r \sin \theta d r d \theta$ over the cardioid $r=a(1-\cos \theta)$ above the initial line.
g) Solve $(y+x) d x=(y-x) d x$.
h) Find Particular Integral of $\left(D^{6}-D^{4}\right) y=x^{2}$.
i) Define Unit impulse function.
j) State and prove linear property of Laplace transforms.

PART-B
(50 Marks)
2.a) Reduce the quadratic form $2 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}$ to canonical form.
b) Determine the values of a, b, c when $\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$ is orthogonal.

OR
3.a) If A is an nxn matrix and $\mathrm{A}^{2}=\mathrm{A}$, then show that each Eigen value of A is 0 or 1 .
b) For what values of λ, the system of equations $x+y+z=1, x+2 y+4 z=\lambda, x+4 y+10 z=\lambda^{2}$ have a solution and solve them completely in each case.
4.a) Prove that $u=x+y+z, v=x y+y z+z x, w=x^{2}+y^{2}+z^{2}$ are functional dependent and find the relation between them.
b) If $x=u(1-v) ; y=u v$ prove that $\frac{\partial(u, v)}{\partial(x, y)} \times \frac{\partial(x, y)}{\partial(u, v)}=1$.

OR
5.a) State and verify Rolle's theoremforthe function $f(x) \bar{E}^{x^{2 m-1}}(a-x)^{2 n}$ in (1 a).
b) Show that $h<e^{h}-1<h e^{n}$ for $\hbar \neq 0$.
6.a) Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in the first quadrant by using the transformation $x=a u$ and $y=b v$.
b) Evaluate $\iint r^{3} d r d \theta$ over the area included between the circles $r=2 \sin \theta$ and $r=4 \sin \theta$.

OR

7.a) Evaluate $\iint x^{m-1} y^{n-1} d x d y$ over the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
b) Evaluate $\int_{0}^{\infty} \frac{x d x}{\left(1+x^{6}\right)}$ using $\Gamma-\beta$ functions.
8. Radium decomposes at a rate proportional to the quantity of radium present. Suppose it is found that in 25 years approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long will it take for one-half of the original amount of radium to decompose.

OR

9.a) Solve $x d x+y d y=\frac{x d y-y d x}{x^{2}+y^{2}}$.
b) Solve by the method of variation of parameters $\left(D^{2}-2 D\right) y=e^{x} \sin x$.
10.a) Find the Laplace transform of the function $f(t)=\left\{\begin{array}{cc}t & 0<t<a \\ -t+2 a & a<t<2 a\end{array}\right.$
b) Find inverse Laplace transform of the function $\frac{1}{s^{2}(s+3)}$.

OR

11.a) Using Laplace transform, solve $\left(D^{2}+1\right) x=t \cos 2 t$ given $x=0, \frac{d x}{d t}=0$ at $t=0$.
b) Using Convolution theorem, evaluate $L^{-1}\left\{\frac{1}{\mathrm{~s}\left(\mathrm{~s}^{2}+2 \mathrm{~s}+2\right)}\right\}$.

