JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.Tech I Year Examinations, November/December - 2015** MATHEMATICS-I (Common to all Branches)

Time: 3 hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A (25 Marks)

1.a)	Define Elementary matrix with an example.	[2]
b)	Prove that an orthogonal set of vectors is linearly independent.	[3]
c)	Check whether the functions $u = e^x \sin y$, $v = e^x \cos y$ are functional dependent or	not. If
	so find the relation between them.	[2]
d)	Find the stationary points of $u(x, y) = \sin x \sin y \sin(x + y)$ where $0 < x, y < \pi$.	[3]
e)	Evaluate $\int_0^\infty a^{-bx^2} dx$.	[2]
f)	Evaluate $\iint r \sin \theta dr d\theta$ over the cardioid $r = a(1 - \cos \theta)$ above the initial line.	[3]
g)	Solve $(y+x)dx = (y-x)dx$.	[2]
h)	Find Particular Integral of $(D^6 - D^4)y = x^2$.	[3]
i)	Define Unit impulse function.	[2]
j)	State and prove linear property of Laplace transforms.	[3]

PART-B

(50 Marks)

- 2.a) Reduce the quadratic form $2x_1x_2 + 2x_1x_3 + 2x_2x_3$ to canonical form.
 - $\begin{bmatrix} 0 & 2b & c \end{bmatrix}$ Determine the values of a, b, c when $\begin{vmatrix} a & b \\ -c \end{vmatrix}$ is orthogonal. b) [5+5] a –b c OR

3.a) If A is an n x n matrix and
$$A^2 = A$$
, then show that each Eigen value of A is 0 or 1.

b) For what values of
$$\lambda$$
, the system of equations
 $x + y + z = 1$, $x + 2y + 4z = \lambda$, $x + 4y + 10z = \lambda^2$ have a solution and solve
them completely in each case. [5+5]

Prove that u = x + y + z, v = xy + yz + zx, $w = x^2 + y^2 + z^2$ are functional dependent and find 4.a) the relation between them.

b) If
$$x = u(1-v)$$
; $y = uv$ prove that $\frac{\partial(u,v)}{\partial(x,y)} \times \frac{\partial(x,y)}{\partial(u,v)} = 1.$ [5+5]

- 5.a)
- State and verify Rolle's theorem for the function $f(x) = x^{2m-1}(a-x)^{2n}$ in (0 a). Show that $h < e^h 1 < he^h$ for $h \neq 0$. b) [5+5]

Max. Marks: 75

- 6.a) Evaluate $\iint (x^2 + y^2) dx dy$ over the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the first quadrant by using the transformation x = au and y = bv.
 - b) Evaluate $\iint r^3 dr d\theta$ over the area included between the circles $r = 2\sin\theta$ and $r = 4\sin\theta$. [5+5]

OR

- 7.a) Evaluate $\iint x^{m-1}y^{n-1}dxdy$ over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - b) Evaluate $\int_0^\infty \frac{x dx}{(1+x^6)}$ using Γ β functions. [5+5]
- 8. Radium decomposes at a rate proportional to the quantity of radium present. Suppose it is found that in 25 years approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long will it take for one-half of the original amount of radium to decompose. [10]

OR

9.a) Solve
$$xdx + ydy = \frac{xdy - ydx}{x^2 + y^2}$$
.

b) Solve by the method of variation of parameters $(D^2 - 2D)y = e^x \sin x$. [5+5]

10.a) Find the Laplace transform of the function
$$f(t) = \begin{cases} t & 0 \le t \le a \\ -t+2a & a \le t \le 2a \end{cases}$$

b) Find inverse Laplace transform of the function $\frac{1}{s^2(s+3)}$. [5+5]

OR

11.a) Using Laplace transform, solve
$$(D^2 + 1)x = t \cos 2t$$
 given $x = 0, \frac{dx}{dt} = 0$ at $t = 0$.

b) Using Convolution theorem, evaluate
$$L^1\left\{\frac{1}{s(s^2+2s+2)}\right\}$$
. [5+5]

--00000--

www.ManaResults.co.in