JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year Examinations, October/November - 2016

MATHEMATICS-I
(Common to all Branches)
Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

> PART- A
(25 Marks)
1.a) Define Eigen vector of a matrix.
b) Write the working procedure to solve the system of non-homogenous equations. [3]
c) Verify for $x=u, y=u \tan v, z=w, J\left(\frac{x, y, z}{u, v, w}\right) \times J^{\prime}\left(\frac{u, v, w}{x, y, z}\right)=1$.
d) Give an example of a function that is continuous on $[-1,1]$ and for which mean value theorem does not hold, explain.
e) Show that $\beta(p, q)=\beta(p+1, q)+\beta(p, q+1)$.
f) Evaluate $\int_{0}^{1} \int_{1}^{2-x} x y d x d y$.
g) Explain the method of solving Bernoulli equation.
h) Solve $\left(D^{4}+2 D^{2} n^{2}+n^{4}\right) y=0$.
i) State and prove change of scale property of Laplace transforms.
j) Prove that $L^{(-1)}\{F(s)\}=f(t)$ and $f(0)=0$ then $L^{(-1)}\{s F(s)\}=\frac{d f}{d t}$.

PART-B

(50 Marks)
2. Determine a non-singular matrix P such that $P^{T} A P$ is a diagonal matrix, where

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \tag{10}\\
1 & 0 & 3 \\
2 & 3 & 0
\end{array}\right]
$$

3.a) Show that the two matrices $\mathrm{A}, \mathrm{C}^{-1} \mathrm{AC}$ have the same latent roots.
b) For a matrix $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2\end{array}\right]$ find the Eigen values of $3 A^{3}+5 A^{2}-6 A+2 I$.
4.a) Find the minimum and maximum values of $\sin x+\sin y+\sin (x+y)$.
b) If $u=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}, x^{2}+y^{2}+z^{2} \neq 0$ then evaluate $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}$. In . In
5.a) Prove that $\frac{\pi}{6}+\frac{1}{5 \sqrt{3}}<\sin ^{-1}\left(\frac{3}{5}\right)<\frac{\pi}{6}+\frac{1}{8}$.
b) Verify Lagrange's mean value theorem for $f(x)=\left\{\begin{array}{cl}x \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x=0)\end{array}\right.$ in [-1.1].
6.a) Evaluate $\iiint_{V} x^{l-1} y^{m-1} z^{n-1} d x d y d z$ where V is the region $x \geq 0, y \geq 0, z \geq 0$ and the plane $x+y+z<1$.
b) Express the integral $\int_{0}^{\infty} \frac{x^{c}}{c^{x}} d x(c>1)$ in terms of Gamma function.

OR
7.a) By changing the order of integration and evaluate $\int_{0}^{b} \int_{0}^{\frac{a \sqrt{b^{2}-y^{2}}}{b}} x y d y d x$.
b) Find the area enclosed by the parabolas $x^{2}=y$ and $y^{2}=x$.
8.a) The number N of bacteria in a culture grows at a rate proportional to N. The value of N was initially 100 and increased to 332 in one hour. What was the value of N after $1 \frac{1}{2}$ hour?
b) Solve $(x-y) d x-d y=0, \quad y(0)=2$.

OR

9. Solve $\left(D^{2}-4 D+4\right) y=x^{2} \sin x+e^{2 x}+3$.
10.a) State and prove convolution theorem for Laplace transforms.
b) Find the Laplace transform of $f(t)=|t-1|+|t+1|, t \geq 0$.

OR
11.a) Solve the differential equation using Laplace transforms

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2 x=e^{-t} ; x(0)=0, x^{\prime}(0)=1 . \tag{5+5}
\end{equation*}
$$

b) Evaluate $L\left\{\int_{0}^{t} e^{-t} \cos t d t\right\}$.

