Code No: 111AD

1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.Tech I Year Examinations, May - 2018 ENGINEERING PHYSICS**

(Common to CE, EEE, ME, ECE, CSE, CHEM, EIE, IT, MCT, ETM, MMT, AE, AME, MIE, PTM, CEE, MSNT, AGE)

Time: 3 hours Max Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. question carries 10 marks and may have a, b, c as sub questions.

PART-A		
		(25 Marks)
1.a)	Define Coordination number and Packing factor.	[2]
b)	Sketch the (100), (110) and (111) planes in a simple Cubic structure.	[3]
c)	Define Fermi Energy.	[2]
d)	State the Bloch theorem.	[3]
e)	Define the Dielectric constant of a material.	[2]
f)	Explain the nature of superconductor in the magnetic field.	[3]
g)	What is diffraction grating?	[2]
h)	An optical fiber having refractive indices of 1.6 and 1.59 for core a	and cladding
	respectively is placed in water of refractive index 1.33. Find the Numerical	Aperture of
	the fiber.	[3]
i)	Write is the significance of Surface to Volume ratio in nanomaterials.	[2]
j)	A hall with volume 6000 m ³ has reverberation time 1.2 sec. Find the total	absorption in
	the hall.	[3]
PART-B		
		(50 Marks)

- 2.a) Distinguish between Ionic, Covalent and Metallic bonds in solids.
 - Obtain the expression for the inter planar spacing of the orthogonal crystal system. b)

[5+5]

OR

- 3.a) Describe the crystal structure of diamond.
 - State the Bragg's law of X-ray diffraction. Discuss the Laue method of X-ray diffraction b) for the determination of crystal structure. [4+6]
- What are Matter waves? How they are different from electromagnetic waves. 4.a)
 - Formulate Schroedinger's Time Independent wave equations for a particle in one b) dimensional infinite square well potential and obtain the expression for its energy values.

[3+7]

OR

- 5.a) Distinguish between Maxwell Boltzmann, Bose Einstein and Fermi Dirac distributions.
 - b) Draw E-K curves for an electron in periodic potential and explain how it leads to formation of energy bands in solids. [6+4]
- 6.a) What is density of polarization? Obtain a relation between polarization density and electric displacement vector.
 - b) Define electronic polarization. Derive an expression for electronic polarizability. [3+7]

OR

- 7.a) Distinguish between dia, para, ferro, antiferro and ferri magnetic materials.
 - b) Write two applications of ferrimagnetic materials.
 - c) What are type I and type II super conductors.

[5+2+3]

- 8.a) Explain the phenomenon of interference in reflected light from a thin film. Obtain the condition for maxima and minima.
 - b) How this phenomenon is used to reduce the heating effect of sun light from the roof of a building. [8+2]

OR

- 9.a) Write down the characteristics of Laser light.
 - b) Describe the construction and working of He-Ne laser with suitable diagrams. [2+8]
- 10.a) What are direct and indirect band gap semiconductors?
 - b) State and explain the Hall-effect and derive the expression for Hall coefficient.
 - c) The Hall coefficient of specimen is 3.66×10^{-4} m³/coul. Find the number of charge carriers present per unit volume of the specimen. [3+5+2]

OR

- 11.a) Derive an expression for the concentration of electrons in an intrinsic semiconductor.
 - b) Describe the Sol-Gel method of preparation of Nanomaterials. [5+5]

---00O00---