JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, February/March - 2016
 MATHEMATICS - III
 (Common to EEE, ECE, EIE, ETM, AGE)

Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A
(25 Marks)
1.a) Prove that $x=2$ is a regular singular point for the differential equation $x(2-x) y^{\prime \prime}-2(x-1) y^{\prime}+2 y=0$
b) Find the particular integral of $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+8 y=x^{3}$
c) Evaluate $\int_{-1}^{1} P_{0}(x) d x$
d) Prove that $J_{0}(0)=1$
e) Find the value of a if cosax sinhy is harmonic.
f) Find the points at which $f(z)=\frac{z}{\left(z^{2}-z\right)}$ is not analytic.
g) Find the residue of $\frac{2 z+3}{z^{2}-z-2}$ at $z=-1$
h) Expand $z \cos \frac{1}{z}$
i) The fixed points of $f(z)$ are the points where $f(z)=z$
j) Find the critical points of $w=\sin z$

PART-B

2. Solve the differential equation in series. $2 x \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-y=0$ around $\mathrm{x}=0$ [10]

OR
3. Solve the differential equation in series. $\frac{d^{2} y}{d x^{2}}+x y=0$
4.a) Prove that $J_{n-1}=\frac{2}{x}\left(n J_{n}-(n+2) J_{n+2}+(n+4) J_{n+4}+\ldots.\right)$
b) Express $x^{2}-3 x+4$ in terms of Legendre Polynimials

OR
5.a) Prove that $\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x)$
b) Express $x^{2}-4 x+7$ in terms of Legendre Polynimials.
6.a) Find an analytic function whose real part is $e^{-x}(x \operatorname{Sin} y-y \operatorname{Cos} y)$
b) Evaluate the integral, $\int_{C} \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{3}}$ where $C:|z|=1$

OR

7.a) Find the analytic function whose real part is $e^{2 x}(x \operatorname{Cos} 2 y-y \operatorname{Sin} 2 y)$
b) Evaluate $\int_{C} \frac{\left(z^{3}-z\right) d z}{(z-2)^{3}}$ where C is $|z|=3$
8. Expand $\frac{1}{z^{2}-3 z+2}$
a) $|z|>2$
b) $1<|z|<2$

OR

9. Find the residue at the singular points of the function $\frac{z^{2}}{(z-1)^{2}(z+2)}$.
10.a) Find the image of $1<x<2$ under the transformation $w=\frac{1}{z}$
b) Find the bilinear mapping which maps the points $\mathrm{z}=1, \mathrm{i},-1$ into $0,1, \infty$.

OR
11.a) Find the image of the infinite stripe $\frac{1}{4} \leq y \leq \frac{1}{2}$ under the mapping $\mathrm{w}=\frac{1}{z}$
b) Find the image of $|z|<1$ and $|z|>1$ under the transformation $W=\frac{i z+1}{(z+i)}$

