JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
 B.Tech II Year I Semester Examinations, March - 2017
 MATHEMATICS - III
 (Common to AGE, ECE, EEE, EIE, ETM)

Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART-A

(25 Marks)
1.a) Solve the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+3 y=0$.
b) Define Regular singular point of a differential equation with example.
c) Write Rodrigue's formula and Generating function of Legendre's polynomials.
d) Show that $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
e) Show that the function $f(z)=e^{z}$ is entire.
f) Evaluate, using Cauchy's integral formula $\int_{C} \frac{\log z}{(z-1)^{3}} d z$, where C is $|z-1|=\frac{1}{2}$.
g) Determine the poles of the function $f(z)=\frac{z+1}{z^{2}(z-2)}$ and the residue at each pole.
h) Find the Laurent series of $f(z)=\frac{(z-2)(z+2)}{(z+1)(z+4)}$, for $|z|>4$.
i) Find the invariant points of the transformation $w=(z-i)^{2}$.
j) Determine the image of the region $|z-3|=5$ under the transformation $w=\frac{1}{z}$.

PART-B

(50 Marks)
2.a) Solve the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+5 y=x^{2} \sin (\log x)$.
b) Apply the Frobenius method to solve ODE $x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-x y=0$.

OR

3.a) Solve the differential equation $(2 x+5)^{2} \frac{d^{2} y}{d x^{2}}-6(2 x+5) \frac{d y}{d x}+8 y=6 x$.
b) Apply the power seftes metronto
4.a) Show that $\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{n} J_{n+1}(x)$.
b) Prove that $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\frac{2}{2 n+1}$, if $m=n$.

OR

5.a) Prove that $(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)$.
b) Prove that $J_{n}(x)=\frac{x}{2 n}\left(J_{n-1}(x)+J_{n+1}(x)\right)$.
6.a) Show that both the real part and the imaginary part of any analytic function satisfy Laplace's equation.
b) Evaluate $\int_{0}^{3+i} z^{2} d z$ along the path the real axis to 3 and then vertically to $3+i$.

OR

7.a) Find the analytic function $f(z)=u+i v$ where $u=\frac{\sin 2 x}{(\cosh 2 y-\cos 2 x)}$.
b) Derive the Cauchy-Riemann equations if $f(z)$ is expressed in polar coordinates.
8. Use residue theorem to evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$.
9. Use residue theorem to evaluate $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+9\right)}$.
10.a) Determine and Plot the image of the region $-1 \leq x \leq 1$ and $-\pi \leq y \leq \pi$ under $w=e^{z}$.
b) Determine and Plot the image of the region $2<|z|<3$ and $|\arg z|<\frac{\pi}{4}$ under $w=z^{2}$.

OR

11.a) Find and plot the rectangular region $0 \leq x \leq 2,0 \leq y \leq 1$ under the transformation $w=\sqrt{2} e^{\frac{i \pi}{4}} z$.
b) Determine the bilinear transformation that maps the points $z_{1}=-1$, $z_{2}=i, z_{3}=1$ into the points $w_{1}=0, w_{2}=i, w_{3}=\infty$ respectively.

