Code No: 113AH JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, April/May - 2018 MATHEMATICS – III (Common to EEE, ECE, EIE, ETM, AGE)

Time: 3 Hours

Note: This question paper contains two parts A and B.Part A is compulsory which carries 25 marks. Answer all questions in Part A.Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

		(25 Marks)
1.a)	Find the particular integral of $x^2 \frac{d^2 y}{dx^2} - 6x \frac{dy}{dx} + 10y = x^2$.	[2]
b)	Find the singular points of the differential equation	
	$x^{3}(x-1)\frac{d^{2}y}{dx^{2}} + 2(x-1)\frac{dy}{dx} + y = 0.$	[3]
c)	Prove that $P'_{n}(1) = \frac{1}{2}n(n+1)$.	[2]
d)	Express $J_3(x)$ in terms of J_0 and J_1 .	[3]
e)	Find the analytic function whose real part is xy .	[2]
f)	Evaluate $\int_0^{1+i} (x^2 - iy) dz$ along the path $y = x^2$.	[3]
g)	Find the zeros of the function $\sin\left(\frac{1}{z}\right)$	[2]
h)	Show that the function e^z has an essential singularity at $z = \infty$.	[3]
i)	Find the fixed points of the transformation $w = \frac{z-1+i}{z+2}$.	[2]
j)	Find the points at which $w = \cosh z$ is not conformal.	[3]
	PART-B	
		(50 Marks)
2.	Solve the equation in series $x^2y'' + xy' + (x^2 - 4)y = 0$.	[10]
	OR	
3.	Solve $(x + a)^2 \frac{d^2 y}{dx^2} - 4(x + a)\frac{dy}{dx} + 6y = x$	[10]
4.	State and prove the generating function for $P_n(x)$.	[10]
	OR	
5.a)	Prove that $(n + 1)P_{n+1}(x) = (2n + 1)xP_n(x) - nP_{n-1}(x)$.	
b)	Prove that $\frac{d}{dx}(J_0(x)) = -J_1(x)$.	[5+5]

6. State and prove Cauchy's intergral formula. [10] OR

7. Verify Cauchy's theorem for the integral of z^3 taken over the boundary of the rectangle with vertices -1, 1, 1+i, -1+i. [10]

www.manaresults.co.in

Max. Marks: 75

(25 Marks)

8. State and prove Laurent series for the function f(z). [10]

- 9. Evaluate $\int_0^{2\pi} \frac{\sin^2\theta}{a+b\cos\theta} d\theta$; (a>b>0). [10]
- 10. Find the bilinear transform which maps the points z = 0, -i, -1 into the points w = i, 1, 0. Find the image of the line y = mx under this transformation. [10] **OR**
- 11. Determine the region of the *w* -plane into which the region bounded by $\frac{1}{2} \le x \le 1$ and $\frac{1}{2} \le y \le 1$ is mapped under the transformation $w = z^2$. [10]

---00000----