Code No: 113AH
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B. Tech II Year I Semester Examinations, November/December - 2017

MATHEMATICS - III
(Common to EEE, ECE, EIE, ETM, AGE)
Time: 3 Hours
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

1.a) Solve $\left(D^{4}+13 D^{2}+36\right) y=0$.
b) Find the P.I of $\left(D^{2}+4\right) y=\cos 2 x$.
c) Prove that $P_{n}{ }^{1}(1)=\frac{1}{2} n(n+1)$.
d) Prove that $\int x J_{0}{ }^{2}(x) d x=\frac{1}{2} x^{2}\left[J_{0}{ }^{2}(x)-J_{1}^{2}(x)\right]$.
e) If $u=e^{x}(x \cos y-y \sin y)$ then find analytic function of $f(z)$.
f) Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path $y=x^{2}$.
g) Expand $f(z)=\frac{z+3}{z\left(z^{2}-z-2\right)}$ for $|z|>2$.
h) Find the residue of $f(z)=\frac{e^{z}}{(z-1)^{2}}$ at the singular point.
i) Find the fixed points of $w=\frac{3 z-2}{z+1}$.
j) Prove that $w=\frac{1}{z}$ is circle preserving.

PART-B

(50 Marks)
2.a) Solve $(D+2)(D-1)^{2}=e^{-2 x}+2 \sinh x$.
b) Solve $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos \log (1+x)$.

OR

3. Obtain the series solution of the equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-4\right) y=0$
4.a) Prove that $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x= \begin{cases}0 & \text { if } m \neq n \\ \frac{2}{2 n+1}, & \text { if } m=n\end{cases}$
b) Show that $\frac{2}{5} P_{3}(x)+\frac{3}{5} P_{1}(x)=x^{3}$.

OR

5.a) Prove that $\frac{d}{d x}\left[J_{n}{ }^{2}(x)+J^{2}{ }_{n+1}(x)\right]=2\left[\frac{n}{x} J_{n}{ }^{2}(x)-\frac{(n+1)}{x} J^{2}{ }_{n+1}(x)\right]$.
b) Show that $\left[J_{\frac{1}{2}}(x)\right]^{2}+\left[J_{\frac{-1}{2}}(x)\right]^{2}=\frac{2}{\pi x}$.
6.a) Prove that the function of $f(z)$ defined by

$$
\begin{array}{rlr}
f(z) & =\frac{x^{3}(1+x)-y^{3}(1-i)}{x^{2}+y^{2}}, z \neq 0 \\
& =0, \quad z=0
\end{array}
$$

is continuous and $\mathrm{C}-\mathrm{R}$ equations at the origin, yet $f^{\prime}(0)$ does not exist.
b) If $f(z)$ is an analytic function of z , prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.

OR
7.a) Evaluate $\int_{c} \frac{z+4}{z^{2}+2 z+5} d z$ where c is the circle.
i) $|z+1-i|=2$
ii) $|z+1+i|=2$
b) State and prove Cauchy's inequalities.
8.a) State and prove residue theorem.
b) Evaluate $\int_{0}^{\pi} \frac{a d \theta}{a^{2}+\sin ^{2} \theta}(a>0)$.

OR
9.a) Evaluate $\int_{0}^{\infty} \frac{d x}{x^{4}+a^{4}}(a>0)$.
b) Prove that $\int_{0}^{\infty} \frac{\sin m x}{x} d x=\frac{\pi}{2}$.
10.a) Plot the image of $1<|z|<2$ under the transformation $w=2 i z+1$.
b) Find the graph of the region $\frac{-\pi}{2}<x<\frac{\pi}{2}, 1<y<2$ under the mapping $w=\sin z$.

OR

11.a) Find the image of the region in the z-plane between the lines $y=0$ and $y=\frac{\pi}{2}$ under the transformation $w=$ 醇.WW. ManaResults.Co.in
b) Find the bilinear transformation which maps the points $\infty, i, 0$ in the z-plane into $-1,-i, 1$ in the w-plane.

