R13

[5+5]

Code No: 114CS

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, November/December - 2015 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

(w1, w2....w7) = (2, 3, 5, 7, 1, 4, 1)

Write an algorithm for single source shortest path.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A (25 Marks)

1.a)	Arrange the following functions in increasing order	[2]
	n, logn, n ² , n ³ , nlogn, 2 ⁿ	[2]
b)	Find the worst-case, best-case and average -case time complexity of the	e binary
	search.	[3]
c)	Write an algorithm for set Union operation.	[2]
d)	Explain the tree traversal techniques with an example.	[3]
e)	State the principle of optimality.	[2]
f)	Write control abstraction algorithm of greedy method.	[3]
g)	Find the sum of subsets for the following set of integers by using fix method $\{5, 10, 25, 50, 100\}$ for $W = 75$	ed tuple [2]
	(5, 10, 25, 50, 100) 101 W = 15	[3]
h)	What do you mean by dynamic program?	[2]
i)	Define P, NP, NP-Complete and NP- Hard.	[3]
j)	Write the non deterministic sorting algorithm.	
2.a)	Part-B (50 Marks) Derive the time complexity of quick sort in an average case.	
b)	Write an Euclid's algorithm. OR	[5+5]
3.a)	Write an algorithm of Merge sort.	
b)	Solve the following recurrence relation $T(n) = 4T(n/3) + n^{2}.$	[5+5]
4.a)	Write an algorithm of AND/OR graph traversal.	
b)	Explain how BFS can be used to identify the connected components in with an example.	a graph [5+5]
	OR	
5.a)	Write an algorithm to find the strongly connected components in a digrap	h.
b)	Explain the properties of Bi - connected components.	[5+5]
6.a)	Find an optimal solution to the $0/1$ knapsack instance n=7, m=15, (p1, P2,P7) = (10, 5, 15, 7, 6, 18, 3) and	

OR

7.a) Obtain all pair shortest paths for the following graph:

b) Write an algorithm for job sequencing with deadlines.

[5+5]

- 8.a) Explain how the Hamiltonian circuit problem is solved by using the backtracking concept.
 - b) Write an algorithm of FIFO Branch and Bound.

[5+5]

9. Draw the portion of the state space tree generated by LCBB for the following knapsack instances:

n=5, $(P_1, P_2, P_3, P_4, P_5) = (W_1, W_2, W_3, W_4, W_5) = (4, 4, 5, 8, 9)$ and m=15.

[10]

- 10.a) Show that the Hamiltonian-path problem is NP-complete.
 - b) Write a non deterministic sum of subsets problem.

[5+5]

OR

- 11.a) Explain satisfiability problem and write the algorithm for the same.
 - b) Is travelling salesman problem NP-hard or NP-Complete? Justify your answer.

[5+5]

---00O00---