Code No: 114CV JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, May - 2016 ELECTRONIC CIRCUIT ANALYSIS (Common to ECE, EIE, ETM)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A (25 Marks)

1.a)	What is the main application of CC amplifier and Why?	[2]
b)	What are the conditions for approximate h-parameter model?	[3]
c)	What is base-spreading resistance?	[2]
d)	What is the bypass capacitor and why it is connected in CE amplifier	? [3]
e)	What is the effect of negative feedback on stability?	[2]
f)	What is Barkhausen criterion?	[3]
g)	What are the advantages of class-B operation?	[2]
h)	What is harmonic distortion?	[3]
i)	What are the properties of Q of a tuned circuit?	[2]
j)	What is the effect of cascading on double tuned amplifier?	[3]
	PART-B	(50 Marks)

- 2.a) Draw the CC amplifier and derive the expression for A_I, R_I, A_V, Y_O.
 - b) A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1000$ ohms. The h-parameters are $h_{ie} = 1.0$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25 \mu$ A/V. compute A_{I} , R_{I} , A_{V} , R_o using exact analysis. [5+5]

OR

- 3.a) Derive the expression for the bandwidth of multistage amplifier.
- b) What is the use of transformer coupling in the output of multistage amplifier?
 - [5+5]
- 4.a) Derive the equation for the lower 3dB frequency of CE configuration due to emitter bypass capacitor.
- b) Given the following transistor measurements made at $I_C=5mA$ and $V_{CE}=5$ V and at room temperature. $h_{ie} = 600$ ohms, $h_{fe}=100$, $C_{b'c}=3PF$ and $A_i=10$ at 10 MHz. Find f_{β} , f_T , $C_{b'e}$, $r_{b'e}$ and $r_{bb'}$ of hybrid equivalent circuit in CE configuration.

[5+5]

OR

- 5.a) Derive the expression for voltage gain of a common source FET amplifier with and without source resistance included in the circuit.
- b) In the CS amplifier $R_L=5K$, $R_G=10$ Mohms, $\mu=50$ and $r_d=35$ K. Evaluate voltage gain, input impedance and output impedance. **www.ManaResults.co.in**[5+5]

- 6.a) Show that bandwidth increases in negative feedback amplifiers.
 - b) An amplifier has a input resistance of 200 K ohms, with a certain negative feedback introduced in the above amplifier the input resistance is found to be 20 M ohms and overall gain is found to be 1000. Calculate the loop gain and feedback factor. [5+5]

OR

- 7. Draw the circuit diagram of RC-Phase shift oscillator using BJT and derive the expressions for frequency of oscillations and condition on gain. [10]
- 8.a) Derive the expression for maximum conversion efficiency for a Transformercoupled Class A power amplifier.
 - b) List out the advantages of complementary symmetry configuration over push pull configuration. [7+3]

OR

- 9.a) Show that the maximum conversion efficiency of the idealized class B push-pull circuit is 78.5%.
- b) For an ideal class B transistor amplifier the collector supply voltage V_{cc} and the effective load resistance $R_L = (N_1/N_2)^2 R_L$ are fixed as the base current excitation is varied. Show that the collector dissipation P_c is zero at no signal, rises as V_m increases and passes through a maximum at $V_m = 2Vcc/\pi$. [5+5]
- 10.a) Derive an expression for the bandwidth of a synchronous tuned circuit.
 - b) Discuss the necessity of stabilization circuits in tuned amplifiers. [7+3]

OR

11. Draw the equivalent circuit of double tuned amplifier and derive the expression for gain at resonance. [10]

---00000----