Code No: 114CV JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, October/November - 2016 ELECTRONIC CIRCUIT ANALYSIS (Common to ECE, EIE, ETM)

Time: 3 Hours

Max. Marks: 75

R13

Note: This question paper contains two parts A and B.Part A is compulsory which carries 25 marks. Answer all questions in Part A.Part B consists of 5 Units. Answer any one full question from each unit.Each question carries 10 marks and may have a, b, c as sub questions.

PART – A (25 Marks)

1.a)	What are the merits and demerits of a cascade amplifier over a s	imple CE
	amplifier?	[2]
b)	Compare CE, CC and CB with their characteristics.	[3]
c)	Draw the small signal model of source follower.	[2]
d)	Write a short note on frequency response of BJT amplifiers.	[3]
e)	Define sensitivity & Desensitivity factors in feedback Amplifiers.	[2]
f)	Briefly discuss about the effect of feedback on amplifier Bandwidth.	[3]
g)	What are the drawbacks of transformer coupled power amplifiers?	[2]
h)	Write the applications of Heat Sinks.	[3]
i)	Define Q-factor.	[2]
i)	What happens when no of stages is increased in single tuned	annanda

j) What happens when no. of stages is increased in single tuned cascaded amplifiers? [3]

PART – B

(50 Marks)

2. Draw the circuit diagram of Common Collector amplifier. Derive the expression for A_I, A_V, R_i , and R_o in terms of h-parameters of CE transistor. [10]

OR

- 3.a) Explain RC-coupled CE transistor circuit, Write the expressions for current gain.
- b) Compute the overall lower cut-off frequency of an identical two stage cascade of amplifiers with individual lower cut-off frequency given as 412 Hz. [5+5]
- 4.a) Draw the small-signal high frequency CE model of a transistor.
- b) What is the relationship between f_T and f_β ? Discuss the significance of f_T . [5+5]

OR

- 5.a) Discuss the effect of coupling capacitors of a CE amplifier on the overall frequency response of the amplifier.
 - b) Draw and explain the FET high frequency model. [5+5]

www.ManaResults.co.in

- 6.a) Derive an expression for frequency of oscillation of a RC phase-shift oscillator using a FET.
 - b) Design a RC phase-shift oscillator to operate at a frequency of 5KHz. use a MOSFET with $\mu = 51$ and $r_d = 5.5$ K. The phase shift network not load the amplifier, Find the minimum value of the drain circuit resistance for which the circuit will oscillate. [5+5]

OR

- 7.a) Draw the four types of feedback amplifiers and explain them briefly.
- b) What are the characteristics of an amplifier that are modified by negative feedback? [5+5]
- 8. Define conversion efficiency. Determine the maximum value of conversion efficiency for a series fed class A power amplifier. [10]

OR

- 9. Briefly explain the distortion in power-amplifier and Thermal stability. [10]
- 10. What is a tuned amplifier and how do you classify tuned amplifier. Briefly explain. [10]

OR

11. Derive the expressions for Bandwidth and Q-factor of single tuned, capacitively coupled amplifiers. List the assumptions made for the derivation. [10]

--00000--

www.ManaResults.co.in