Code No: 117FZ
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech IV Year I Semester Examinations, November/December - 2017
 OPERATIONS RESEARCH
 (Common to ME, CSE, IT, MCT, AME, MIE, MSNT, AGE)

Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) What is Operations research?
b) What is a model? List the various classification schemes of Operations Research models.
c) How the assignment problem can be viewed as a linear programming problem? [2]
d) Formulate the travelling - Salesman problem as an assignment problem.
e) Define the problem of sequencing.
f) What are the situations which make the replacement of items necessary?
g) What are the characteristics of game theory?
h) What is inventory management? Write the major decisions concerning inventory? [3]
i) What are major limitations of simulation?
j) What do you understand by a queue? Give some important applications of queuing theory?

PART-B

(50 Marks)
2. What do you mean by LPP? What are its limitations? Use penalty (or Big-M) method to maximize $\mathrm{z}=3 \mathrm{x}_{1}-\mathrm{x}_{2}$
Subject to the constraints

$$
\begin{align*}
& 2 x_{1}+x_{2} \geq 2 ; x_{1}+3 x_{2} \leq 3 ; x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0 \tag{10}
\end{align*}
$$

OR

3. What is a simplex? Describe simplex method of solving linear programming problem.
4. Find the optimal solution for the assignment problem with the following cost matrix.

	I	II	III	IV	V
A	11	17	8	16	20
B	9	7	12	6	15
C	13	16	15	12	16
D	21	24	17	28	26
E	14	10	12	11	15
					OR

www.ManaResults.co.in
5. There are three sources or origins which store a given product. These sources supply these products to four dealers. The capacities of the sources $\left(\mathrm{S}_{\mathrm{i}}\right)$ and the demands at dealers $\left(D_{J}\right)$ are as given below.

$$
\begin{aligned}
& S_{1}=150, S_{2}=40, S_{3}=80 \\
& D_{1}=90, D_{2}=70, D_{3}=50, D_{4}=60 .
\end{aligned}
$$

The cost of transporting the product from various sources to various dealers is shown in the table below.

	D_{1}	D_{2}	D_{3}	D_{4}
	27	23	31	69
$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	10	45	40
$\mathrm{~S}_{3}$	30	54	32	57

Find out the optimum solution for transporting the products at a minimum cost.
6. Find the sequence that minimizes the total elapsed time required to complete the following jobs.

Processing times in hours

No. of jobs	$:$	1	2	3	4	5	6
Machine A	$:$	4	8	3	6	7	5
Machine B	$:$	6	3	7	2	8	4

7. A truck owner finds from his past records that the maintenance cost per year of a truck whose purchase price is Rs.8000, are given below:

Year	$:$	1	2	3	4	5	6	7	8
Maintenance cost (Rs):	1000	1300	1700	2200	2900	3800	4800	6000	
Resale Price	$:$	4000	2000	1200	600	500	400	400	400

Determine at what time it is profitable to replace the truck?
[10]
8. The payoff matrix of a game is given. Find the solution of the game to the player A and B.

$$
\begin{array}{ll}
& \\
& \text { I } \tag{10}\\
& \text { I } \\
\text { II } \\
\text { III } \\
& \text { IV }
\end{array}\left(\begin{array}{rrrrr}
\text { I } & \text { II } & \text { III } & \text { IV } & \text { V } \\
-2 & 0 & 0 & 5 & 3 \\
3 & 2 & 1 & 2 & 2 \\
-4 & -3 & 0 & -2 & 6 \\
5 & 3 & -4 & 2 & -6
\end{array}\right)
$$

9. Find the optimal order quantity for a product for which the price breaks are as follows:

$$
\begin{array}{cc}
\text { Quantity } & \text { Unit cost (Rs.) } \\
0 \leq \mathrm{q}_{1}<500 & 10.00 \\
500 \leq \mathrm{q}_{2} \leq 750 & 9.25 \\
750 \leq \mathrm{q}_{3} & 8.75
\end{array}
$$

The monthly demand for a product is 200 units, the cost of storage is 2% of the unit cost and the cost of ordering is Rs. 350.
10. A supermarket has two girls ringing up sales at the counters. If the service time for each customer is exponential with mean 4 minutes, and if people arrive in a Poisson fashion at the counter at the rate of 10 per hour, then calculate:
a) The probability of having to wait for service;
b) The expected percentage of idle time for each girl;
c) If a customer has to wait, find the expected length of his waiting time.
[10]

OR

11.a) State the Bellman's principle of optimality in dynamic programming and give a mathematical formulation of a dynamic programming problem?
b) Define simulation. Why is simulation used? Give one application area where this technique is used in practice?

