JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year Examinations, May - 2016
 MATHEMATICS-I

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, ETM, MMT, AE, AME, MIE, PTE, CEE, MSNT)
Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Define an Unitary matrix.
b) Find the Eigegn values of the matrix $\left[\begin{array}{cc}1 & -2 \\ -5 & \cdots\end{array}\right]$
c) If $f(x)=x^{3}-3 x^{2}+2$ in $[2,4]$, then find the value of C of Lagranges mean value theorem.
d) State Rolle's mean value theorem.
e) Evaluate $\int_{x=0}^{1} \int_{y=0}^{2} y^{2} d y d x$.
f) Evaluate $\int_{0}^{\infty} x^{1 / 2} e^{-x / 5} d x$ in terms of Gamma functions.
g) State Newtons Law of cooling.
h) Find the solution of the differential equation is $\left(D^{2}+4\right) y=0$.
i) Find $L\left[t e^{t}\right]$.
j) Find $L^{-1}\left(\frac{1}{s^{3}}\right)$.

PART-B

2.a) Prove that the Eigen values of a skew-Hermitian matrix are zero or purely imaginary.
b) If A and B are square symmetric matrices of same order then prove that
i) $A B+B A$ is symmetric
ii) $\mathrm{AB}-\mathrm{BA}$ is Skew symmetric.

OR
3. Using Cayley Hamilton theorem find the inverse of the matrix

$$
\left[\begin{array}{rrr}
7 & 2 & -2 \\
-6 & -1 & \ldots \\
6 & 2 & \ddots 1
\end{array}\right]
$$

4. Find the maximum and minimum values of $x^{3} y^{2}(1-x-y)$.

OR
5 If $x=u w, y=\frac{u}{v}$. Verify that $\frac{\partial(x, y)}{\partial(u, v)} \cdot \frac{\partial(u, v)}{\partial(x, y)}=1$.
6.a) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d x d y$.
b) Evaluate $\int_{0}^{1} \frac{x^{4} d x}{\sqrt{\left(1-x^{2}\right)}}$.

OR
7. By changing the order of integration evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$.
8.a) If a population is increasing exponentially at the rate of 2% per year. What will be the percentage increase over a period of 10 years?
b) Solve the differential equation $\left(D^{2}-5 D+6\right) y=e^{x} \operatorname{Sin} x$.

OR

9. Solve $\left(D^{2}+1\right) y=x \sin x$ by the method of variation of parameters.
10.a) Find L [t cost].
b) Find the inverse Laplace transform of $\frac{s-5}{\left(s^{2}+3 s+2\right)}$.

OR

11. Solve the differential equation $\frac{d^{2} x}{d t^{2}}-\frac{4 d x}{d t}-12 x=e^{3 t}, x(0)=1, x^{\prime}(0)=-2$ using Laplace transforms.
