JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech I Year Examinations, August/September - 2016

MATHEMATICS-I
(Common to all Branches)
Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Find the rank of the matrix $\left[\begin{array}{cccc}1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 9 \\ 1 & 3 & 4 & 1\end{array}\right]$.
b) If A is an $\mathrm{n} \times \mathrm{n}$ matrix and $\mathrm{A}^{2}=\mathrm{A}$, then show that each Eigen value of A is 0 or 1. [3]
c) Give an example of a function that is continuous on $[-1,1]$ and for which mean value theorem does not hold with explanation.
d) Find the maximum and minimum values of $x+y+z$ subject to $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$.
e) Evaluate $\int_{0}^{\infty} a^{-b x^{2}} d x$.
f) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}}\left(x^{2}+y^{2}\right) d y d x$ by changing into polar coordinates.
g) Solve the differential equation $(h x+b y+f) d y+(a x+h y+g) d x=0$.
h) Find the equation of the curve passing through the point $(1,1)$ whose differential equation is $(y-y x) d x+(x+x y) d y=0$.
i) Find Laplace transform of $4 \sin (t-3) u(t-3)$.
j) Express $f(t)$ in terms of Heavisides unit step function $f(t)=\left\{\begin{array}{lr}t^{2} & 0<t<2 \\ 4 t & t>2\end{array}\right.$

PART-B

(50 Marks)
2.a) Show that the two matrices $\mathrm{A}, \mathrm{C}^{-1} \mathrm{AC}$ have the same latent roots.
b) For a matrix $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2\end{array}\right]$ find the Eigen values of $3 A^{3}+5 A^{2}-6 A+2 I$.

OR

3. Reduce the following quadratic form to canonical form and find its rank and signature $x^{2}+4 y^{2}+9 z^{2}+t^{2}-12 y z+6 z x-4 x y-2 x t-6 z t$.
4.a) Prove that $u=x+y+z, v=x y+y z+z x, w=x^{2}+y^{2}+z^{2}$ are functional dependent and find the relation between them.
b) If $x=u(1-v) ; y=u v$ prove that $\frac{\partial(u, v)}{\partial(x, y)} \times \frac{\partial(x, y)}{\partial(u, v)}=1$.
4. Find the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
6.a) Evaluate $\iint x^{m-1} y^{n-1} d x d y$ over the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
b) Evaluate $\int_{0}^{\infty} \frac{x d x}{\left(1+x^{6}\right)}$ using Γ - β functions.

OR

7. Find the volume bounded by the cylinders $x^{2}+y^{2}=4$ and $z=0$.
8. Solve $\left(D^{2}-4 D+4\right) y=8 x^{2} e^{2 x} \sin 2 x$.

OR

9. A particle is executing simple harmonic motion of period T about a centre O and it passes through the position $\mathrm{P}(\mathrm{OP}=b)$ with velocity v in the direction OP . Show that the time that elapses before it returns to P is $\frac{T}{\pi} \tan ^{-1} \frac{v T}{2 \pi b}$.
10. Solve the differential equation $\frac{d^{2} x}{d t^{2}}-4 \frac{d x}{d t}-12 x=e^{3 t}$, given that $x(0)=1$ and $x^{\prime}(0)=-2$ using Laplace transform.

OR
11.a) Using Laplace transform, solve $\left(D^{2}+1\right) x=t \cos 2 t$ given $x=0, \frac{d x}{d t}=0$ at $t=0$.
b) Using Convolution theorem, evaluate $L^{-1}\left\{\frac{1}{s\left(s^{2}+2 s+2\right)}\right\}$.

