Code No: 124CU JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, May - 2017 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES (Common to ECE, ETM)

Max. Marks: 75

(25 Marks)

Time: 3 Hours

3.a)

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

		(2 0 1111115)
1.a)	Derive the expression for continuity current equation.	[2]
b)	Write Maxwell's equations for electrostatic fields.	[3]
c)	Explain gauss law for magnetic fields	[2]
d)	State Ampere's law and discuss its significance.	[3]
e)	Define Uniform plane wave.	[2]
f) .	Describe instantaneous, time averaged and reactive power.	[3]
g)	Differentiate group and phase velocities.	[2]
h)	A lossless transmission line of length 50cm with $L=10\mu$ H/m and C=40pF/m is operating	
	at 30MHz. Find its electrical length.	[3]
i)	List the properties of smith chart	[2]
j)	In an air line, adjacent maxima are found at 12.5cm and 37.5cm. Calculate the operating	
	frequency.	[3]
PART-B		
		(50 Marks)

- 2.a) What is Gauss Law. Explain any two applications of Gauss Law.
- b) Derive the expression of Electric field at a point due to an infinite sheet of charge. [5+5] **OR**
 - Discuss energy density in electrostatic fields.
- b) Three point charge -1nc, 4nc and 3nc are located at (0,0,0) (0,0,1) and (1,0,0) respectively. Find the energy in the system. [5+5]
- 4.a) State Farday's Law. Explain the methods that cause variation of flux with time.
- b) Explain the concept of displacement current. [6+4]

OR

- 5.a) Express Maxwell's equation in differential form and integral form. Derive Boundary conditions at dielectric to dielectric boundary.
 - b) Derive the Lorentz condition for potentials. [6+4]

www.ManaResults.co.in

- 6.a) Explain oblique incidence wave propagation with perpendicular polarization.
 - b) What is skin depth? Mention its importance citing some applications. Calculate skin depth of copper with following conditions $f=10^{10}$ Hz, $\mu=\mu_0$, $\sigma = 5.8 \times 10^7$ S/m. [5+5]

OR

- 7.a) What is poynting theorem? Derive the expression for poynting vector.
- b) Explain wave propagation in conducting medium.
- 8.a) Short circuited and open circuited measurements at a frequency of 5KHz on a line length 100km yields the following results. $Z_{oc}=570|\underline{-48}^0$, $Z_{sc}=720|\underline{34}^0$. Find characteristic impedance and propagation constant of the line.
 - b) Derive the transmission line equations in terms of receiving end voltages and currents.

[5+5]

[6+4]

OR

- 9.a) An open wire unloaded line of 75km is operating at frequency of 1000KHz. $Z_{oc}=170|\underline{-48}^0$, $Z_{sc}=20|\underline{34}^0$. Calculate line parameters.
 - b) Derive the expression for attenuation and phase constants expressed in terms of primary constants. [5+5]
- 10.a) Derive the construction of smith chart.
 - b) A lossless line is terminated in a resistance is found to have a VSWR of 4, characteristic impedance is calculated as 100 Ω . A short circuited stub that matches the line to the load is placed at < $\lambda/8$ distance from the load using smith chart. Find the value of load resistance and stub length in wavelength. [5+5]

OR

- 11.a) Explain how UHF lines can be used as circuit elements.
 - b) Mention the importance of $\lambda/2$, $\lambda/4$ and $\lambda/8$ lines. [5+5]

---00000----