Code No: 124DT

Time: 3 Hours

Max. Marks: 75

R15

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART - A	(25 Marks)
1.a)	AB+A'C+BC = AB+A'C represents which theorem.	[2]
b)	How do you obtain dual of an expression?	[3]
c)	What are don't cares?	[2]
d)	Explain the wired logic.	[3]
e)	Compare latch and flip flop.	[2]
f)	Explain the timing considerations of sequential circuits.	[3]
g)	What are the drawbacks of ripple counters?	[2]
h)	Explain about state diagram.	[3]
i)	List the capabilities of finite state machine.	[2]
j)	Explain about ASM chart.	[3]

PART - B (50 Marks)

- 2.a) Convert the given Gray code number to equivalent binary 001001011110010.
 - b) Convert (A0F9.0EBA98.0DC)₁₆ to decimal, binary, octal. [5+5]

OR

- 3.a) Simplify the following Boolean expressions using the Boolean theorems.
 (i) (A+B+C) (B'+C) + (A+D) (A'+C) (ii) (A+B) (A+B') (A'+B)
 - b) Why a NAND and NOR gates are known as universal gates? Simulate all the basic Gates. [5+5]
- 4.a) Minimize the following expressions using K-map and realize using NAND Gates. $f = \sum m (1, 3, 5, 8, 9, 11, 15) + d (2, 13).$
- b) Simplify the following boolean function using Tabular method. $F(A,B,C,D)=\sum m(0,1,2,5,7,8,9,10,13,15)$ [5+5] **OR**
- 5. With the help of Logic diagram and Truth Table, discuss 8×1 Multiplexer and then realize $f(x, y, z) = \sum m(1, 2, 4, 7)$ using 8×1 MUX as well as using 4×1 MUX. [10]

www.ManaResults.co.in

- 6.a) Explain the operation JK master slave flip flop. Explain its truth table.
- b) Explain the realization of SR flip-flop, JK flip-flop using D flip-flop. [5+5] OR
- 7.a) Realize D-FF and T-FF using JK-FF. Draw the logic diagrams with their truth tables.
 - b) Deduce the design procedure for sequential logic circuits and give the classification of sequential logic circuits. [5+5]
- 8.a) Design and explain a synchronous MOD-12 down-counter using j-k flipflop.
- b) Design and explain a 4-bit ring counter using D-flip flops with relevant timing diagrams. [5+5]

OR

- 9.a) Design a MOD-10 ripple counter.
- b) Design and construct MOD-5 synchronous counter using JK flip flops. [5+5]
- 10.a) What are the capabilities and limitations of finite state machines? Discuss.
 - b) Explain the procedure for state minimization using merger graph and merger table. [5+5]

OR

- 11.a) Differentiate between an ASM chart and a conventional flow chart.
 - b) Explain in detail the ASM technique of designing a sequential circuit. [5+5]

--00000--

www.ManaResults.co.in