R13

Code No: 126AG

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year II Semester Examinations, April - 2018 COMPUTER METHODS IN POWER SYSTEMS

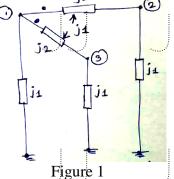
(Electrical and Electronics Engineering)

Time: 3 hours	Max. Marks: 75
I micro induits	1,14,1,1,14,1,15, , e

Note: This question paper contains two parts A and B.

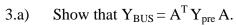
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

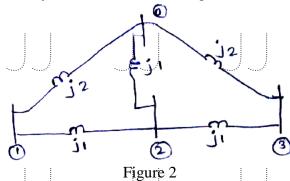

(25 Marks)

- 1.a) Define the terms TREE, Co-TREE and LINK of a graph. [2]
 - b) What is an incidence Matrix? Explain with a suitable example. [3]
 - c) What is necessity of power flow studies? [2]
 - d) Compare all load flow methods. [3]
 - e) What is the necessity of short circuit analysis? [2]
 - f) List out the advantages of per unit representation for power systems. [3]
 - g) Define steady state, dynamic and transient stability. [2]
 b) Define synchronizing power coefficient [3]
 - h) Define synchronizing power coefficient. [3]
 - i) Give the limitations of equal area criterion. [2]
 - j) What are the methods to improve transient stability? [3]

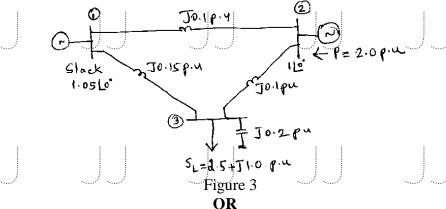
PART - B


(50 Marks)

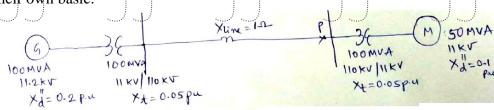
2.a) Form the Y_{BUS} for the system shown in below figure 1, using singular transformation method.


b) Give the steps for modification of existing Z_{BUS} , when a branch Z_b is added from existing bus(k) to the reference bus. [5+5]

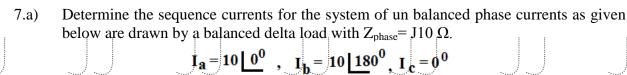
OR



b) Form the Z_{BUS} for the system shown in below figure 2.


[5+5]

- 4.a) Briefly discuss about the classification of load flow methods and their application in the real world.
 - b) For the three bus system shown in below figure 3, perform 2 iterations of Gauss Seidal load flow method. The value shown in figure are line reactances in p.u. and shunt capacitor of susceptance J0.2 per unit. [5+5]

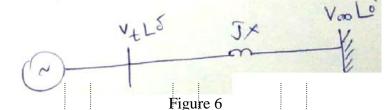


- 5. Explain the Newton Raphson Load flow method in polar force, and derive the equation to compute the Jacobian matrix elements. [10]
- 6. For the system shown in figure 4 below. All values shown are per unit reactance on their own basic.

- a) Draw the single line reactances diagrams of the system with system base as 100 MVA and 11.2 kV.
- b) Determine the symmetrical sub transient fault current for a balanced fault at point 'P'. [5+5]

OR

b) For the system shown in figure 5, find the fault current for a LG fault at print 'P'. Assume fault load current to be zero. [5+5]



Generator: 100 MVA, 11 kV, $X_1 = X_2 = J0.2 \ p \ u$, $X_0 = J0.05 \ p \ u$, $X_n = J0.3 \ p \ u$.

Transformer 1 & 2: 100 MVA, 11 kV/33kV, $X_1 = X_2 = J0.01 p u$, $X_0 = J0.012 p u$

Transmission Line; 33 kV, 100 MVA, $X_1 = X_2 = J0.02$ p u, $X_0 = J0.05$ p u System Motor: 100 MVA, 11 kV, $X_1 = X_2 = J0.15$ p u, $X_0 = J0.05$ p u and $X_n = J0.2$ p u.

- What is steady state stability limit? Derive the necessary condition for the system to be 8.a) steady state stable.
 - b) For an SMVB system shown in below figure 6, the following are the operating conditions: $V_{\infty}=1$ $\lfloor 0^0$, $|V_t|=1.0$, line reactance jx = 0.1 per unit and sub transient reactance of the synchronous machine is X''d = J0.2 pu.

Determine the power angle curve of the machine. Assume $\rho_m = \rho_e = 1.0$

- 9.a) Briefly discuss about the methods to improve steady state stability.
- What is power angle curve? Deduce the relation from a SMIB system having lossless b) line. [5+5]
- What is swing and derive the swing equation? 10.a)
 - Give the applications of equal area criterion.

OR

		JJ	JJ		JJ	JJ		
11. For the system shown in below figure 7.								
		N 3 X = Jaspu J	0.1 py	6.2 py		JJ		
Figure 7 a) Determine the maximum permissible increase in ρ_m (mechanical input power) that is possible to lead the system in to critical stability. Assume initially $\rho_m = \rho_e = 1.0$ pu.								
	b) Determine	the critical clear line and the faul	ring angle, when It is cleared by o	a 3 d balanced faperating the line	ault occurs at the	middle th ends.		
						[5+5]		
			ooOoo					
		JJ						
Same Same	saust saust	JJ	Salar Salar	same same	Salar Salar	Salar Salar		
	<u> </u>			<u> </u>				
JJ								