Code No: 126AM

1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, October/November - 2016 REFRIGERATION AND AIR CONDITIONING

(Mechanical Engineering)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

		(25 Marks)
.a)	Explain the cycle of Carnot refrigerator.	[2]
b)	What is the effect of superheating on COP of a system?	[3]
c)	Explain the effect of condenser pressure on the efficiency of the cycle.	[2]
d)	Bring out the principles of working of capillary tube.	[3]
e)	What are different refrigerant and absorbers are used in different applications	. [2]
f)	Explain the principle of steam jet refrigeration system.	[3]
g)	What is the need of ventilation in A/C applications?	[2]
h)	Draw comfort chart and indicate comfort zone.	[3]
i)	What is the role of Registers in the air conditioning systems?	[2]
j)	Explain the working of Air Washer.	[3]

PART – B

(50 Marks)

- 2.a) Explain losses in VCR system and their effects.
 - b) A refrigeration system operates with R12 refrigerant. The evaporator and condenser temperature are at -5°C and -35°C, respectively. The actual suction to the compressor is at 15°C. If superheating of refrigerant vapour from -10°C to 20°C does not add any refrigerating effect,
 - i) Determine the percentage increase in volume flow rate per ton of refrigeration compared with the saturation cycle;
 - ii) Compare the COP for saturated and superheated cycles; and
 - iii) Determine the power required per TR.

[5+5]

UK

- 3.a) Explain the effect of superheating the suction vapour.
 - b) A refrigeration system operates with R12 and produces 1 ton refrigerating effect at the evaporator and condenser temperatures of -5°C and 40°C, respectively. If the liquid is sub cooled from 40°C to 30°C in the condenser, then calculate for the simple compression cycle and sub cooled cycle the following: (i) Refrigerating effect, (ii) Mass flow rate, (iii) Volume of vapour handled by the compressor, (iv) Power requirement, and (v) COP. [5+5]

- 4.a) Explain the principle of Ramming process in Air cooling system.
 - b) A simple air refrigeration system is used for an aircraft to take a load of 20 TR. The ambient pressure and temperature are 0.9 bar and 22°C respectively. The pressure of air is increased to 1 bar due to isentropic ramming action. The air is further compressed in a compressor to 3.5 bar and then cooled in a heat exchanger to 72°C. Finally the air is passed through the cooling turbine and then supplied to the cabin at 1.03 bar. The air leaves the cabin at 25°C. Assuming the isentropic efficiency of compressor and turbine as 80% and 75% respectively, find
 - i) The power required to take the cooling load in the cabin.
 - ii) The COP of the system

Take $C_p=1.005 \text{ kJ/kg-K}$; y=1.4

[5+5]

OR

- 5.a) Draw the line diagram and explain the working of practical vapour absorption system.
- b) In an absorption type refrigerator, the heat is supplied to NH₃ generator by condensing steam at 1.6 bar and 80% dry. The temperature in the refrigerator is to be maintained at -5°C. Find the maximum COP possible. If the refrigeration load is 150 TR and the actual COP is 80% of the maximum COP, find the mass of the steam required per hour. Take the temperature of the atmosphere to be 30°C. [5+5]
- 6.a) Explain the working of hermetically sealed compressor and explain its advantages and Limitations.
 - b) With the help of line diagram, explain the working of the flooded type of evaporator. [5+5]

OR

- 7.a) How the problems related to Air cooled condensers are solved using water cooled Condensers? Explain the working of water cooled condenser with a neat sketch.
- b) With the help of neat diagram, explain the working of thermostatic Expansion valve.

[5+5]

- 8.a) Explain the summer air conditioning system provided with ventilation Air with needed diagrams.
 - b) Room conditions: 26^oC DBT, 19^oC WBT

Outside conditions: 35°C DBT, 27°C WBT

Room heat gains:

Sensible heat: 11.1 kW Latent heat: 3.9 kW

The conditioned air supplied to the room is 50 cm and 25% fresh air and 75% recirculated room air. Determine the following.

- i) The DBT and WBT of supply air.
- ii) The DBT and WBT of mixed fresh and recirculated air before the cooling coil.
- iii) The apparatus dew point and bypass factor of the coil.
- iv) The refrigeration load on the cooling coil and the moisture removed by the coil. [5+5]

OR

- 9.a) Explain with the help of chart, the human comfort chart.
 - b) An air conditioned space is maintained at 25°C DBT and 50% RH. The outside conditions are 40°C DB and 25°C WB. The space has a sensible heat gain of 24.5 kW. Conditioned air is supplied to the space as saturated air at 10°C. The equipment consists of an air washer. The air entering the air washer comprises 25% outside. Calculate the following
 - i) Volume flow rate of air supplied to space.
 - ii) Latent heat gain of space.
 - iii) Cooling load of air washer.

[5+5]

- 10.a) What is the purpose of deodorants and explain different deodorants used?
 - b) Using psychrometric chart, explain the method of cooling and dehumidification process and how do you get them practically? [5+5]

OR

- 11.a) Explain different filters and grills with the help of line diagrams and their working.
 - b) Draw the heat pump circuits and heat sources involved and explain their working details. [5+5]

---00000---