R13

Code No: 126BE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech III Year II Semester Examinations, May - 2016 ANALOG AND DIGITAL IC APPLICATIONS

(Mechanical Engineering (Mechatronics))

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries

	consists of 5 Units. Answer any one full question from each unit. Each 10 marks and may have a, b, c as sub questions.	ch question carries
	PART - A	
		(25 Marks)
1.a)	Describe the chip size and circuit complexity.	[2]
b)	Derive the expression for voltage gain of non-inverting amplifier.	[3]
c)	Describe the introduction to voltage regulators.	[2]
d)	Explain the features of 723.	[3]
e)	Describe the operation of astable multivibrator.	[2]
f)	Explain the principle of monostable multivibrator.	[3]
g)	What are tristate gates?	[2]
h)	Describe the operation of TTL open collector O/Ps.	[3]
i)	Give the pin configuration of decade counter,7490.	[2]
j)	What are different shift registers?	[3]
	PART - B	
		(50 Marks)
2.a)	Derive the expression for voltage gain of instrumentation amplifier.	
b) An op-amp is being used as voltage-to-current converter. The value of resistance us		f resistance used
	in the circuit R is 6.8 K Ω ,R _L = 2 K Ω ,V ₁ = 5V,V ₂ = 0V. Determine the	values of I _L , V _L
	and V_o . Draw the circuit.	[6+4]
	OR	
3.a) Describe the principle of op amp differentiator.	
b	In an op-amp I/V converter circuit, V_0 is $6V_0$, $R_F = 470 \text{ K}\Omega$. Determine	ne the value of short
	circuit current I _{sc} .	[6+4]
4.a	•	
b	,	
	given $2K_1 = 0.765$ and $K_2 = 1.848$.	[5+5]
<i>5</i>)	OR	
5.a)	Explain the principle of triangular waveform generator.	
b)	Determine a second order BPF using op amps, given 2K = 1.414, to p	_
	band of 2 KHz to 20 KHz.	[5+5]
6.a)	Give the details of IC 1408 DAC.	

What is the percentage resolution of a 4-bit DAC given that the maximum number that can be represented using 4-bits is 13. b) [6+4]OR

- 7.a) Explain the operation of dual slope ADC.
 - b) In a dual slope ADC, a 3 ½ digit BCD counter is used and the signal is integrated until the two most significant bits of the counter are 1. What is the decimal count? [6+4]
- 8.a) Describe CMOS transmission gate.
 - b) The following sequences of bits (right-most bit first) appear on the inputs to a 4-bit parallel adder. Determine the resulting sequence of bits on each sum output. [4+6]
 - A_1 1101; A_2 1110; A_3 0000; A_4 1011
 - B_1 1111; B_2 1100; B_3 1010; B_4 0010

OR

- 9.a) Describe CMOS driving TTL.
 - b) Explain the principle of decoders and drives for LED and LCD display. [4+6]
- 10.a) Describe the familiarities with commonly available CMOS 40XX series of IC counters.
 - b) Design a counter to produce the following binary sequence. Use JK flip flops. [5+5] 1,4,3,5,7,6,2,1,-----

OR

- 11.a) Explain the function of synchronous DRAMs.
 - b) Draw a basic logic diagram for a 512×8 bit static RAM, showing all the inputs and outputs.
 - c) Design a counter to produce the following sequence. Use J-K flip flops. [4+3+3] 00, 10, 01, 11, 00, -----

---00O00---