Code No: 126EK

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech III Year II Semester Examinations, May - 2016 DIGITAL SIGNAL PROCESSING

(Common to ECE, EIE)

Time: 3 hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

$\mathbf{PART} - \mathbf{A}$

(25 Marks)

l.a)	Write four advantages of Digital Signal Processing over Analog Signal Proc	essing.[2]
b)	Show that the frequency response of a discrete system is a periodic	function of
	fraguanay	[2]

	frequency.	[3]
c)	Give the relation between DTFT and Z-Transform.	[2]
d)	Distinguish between Linear convolution and circular convolution.	[3]
e)	What are the advantages of Butterworth filter?	[2]
f)	What are the advantages and disadvantages of Chebysher filter.	[3]
g)	Define Impulse Response.	[2]
h)	Define sampling and Nyquist Rate.	[3]
i)	Define Decimation.	[2]
j)	What is the need for Multirate Digital Signal Processing?	[3]

PART – B

(50 Marks)

- 2.a) Test the following systems for linearity, time invariance, causality and stability. $y(n) = sin(2nf\pi/F)x(n)$
 - b) A digital system is characterized by the following difference equation: Y(n) = x(n)+ay(n-1) Assuming that the system is relaxed initially, determine its impulse response. [5+5]

OR

- 3. By taking an example compute DFT by using Over-Lap save method. [10]
- 4.a) Compute the circular convolution of the sequences $x_1(n) = \{1, 2, 0, 1\}$ and $x_2(n) = \{2, 2, 1, 1\}$ Using DFT approach.
 - b) What is FFT? Calculate the number of multiplications needed in the calculation of DFT using FFT algorithm with 32 point sequence. [5+5]

OR

Prove the following properties. $V^{*}(x) \rightarrow V^{*}((-K)) = P_{*}(K)$

5.a)

1)
$$x(n) \rightarrow x((-K))_N K_N(K)$$

ii)
$$x^*((-n))_N R_N(n) \rightarrow X_{ep}(k) = \frac{1}{2} X((K))_N + X^*((-K))_N R_N(K)$$

Compare FET for the second management of the second secon

. -

b) Compare FFT for the sequence: $x[n] = \{1, 0, 1, 1, 0, 1, 1, 1\}$

[5+5]

_

Max. Marks: 75

6.a)	Discuss in detail about spectral transformations.	
b)	Explain how IIR digital filters are designed from analog filters. [5+5]	
	OR	
7.a)	Compare the impulse invariance and bilinear transformation methods.	
b)	Find the order and poles of a low pass Butterworth filter that has a -3db bandwidth of	
,	400 Hz and an attenuation of 20db at 1KHz. [4+6]	
8.a)	Draw and explain frequency response of FIR digital filter.	
b)	Design a high pass filter using hamming window with a cut-off frequency of	
	1.2 radians/second and N=9. [5+5]	
	OR	
9.a)	List the designing steps of FIR filters using fourier method.	
b)	Design a low pass digital FIR filter using Kaiser Window satisfying the specifications	
,	given below.	
	Pass band cut-off frequency = 100 Hz .	
	Stop band cut-off frequency = 200 Hz .	
	Pass band ripple = 0.1 dB	
	Stop band attenuation = 20 dB	
	Sampling frequency = 1000 Hz . [3+7]	
	Sampling frequency = 1000 fiz. $[5+7]$	
10.a)	What are the Dead band Effects? Discuss.	
b)	What is mean by sampling rate conversion? Explain. [5+5]	
/	OR	
11.a)	What are Limit Cycles and discuss various types of Limit Cycles in brief.	
	Discuss the process of performing sampling rate conversion by an rational factor I/D	

b) Discuss the process of performing sampling rate conversion by an rational factor I/D.

[6+4]

---00000----

www.ManaResults.co.in