Code No: 126VF

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, May - 2019 HEAT TRANSFER (Common to ME, AME, MSNT)

Time: 3 hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

What is the convection mode of heat transfer? 1.a) [2] What are the applications of heat transfer? b) [3] What is the function of fin? [2] c) What is critical radius of insulation? d) [3] Differentiate the free and forced convection. e) [2] What are the advantages of dimensional analysis? f) [3] What is film wise condensation? g) [2] What is the concept of shape factor? h) [3] What is the difference between regenerator and recuperator? i) [2] What are the advantages of NTU method over the LMTD method? **i**) [3]

PART - B

(50 Marks)

R15

Max. Marks: 75

(25 Marks)

- 2.a) A Stainless steel plate is of 2 cm thick is maintained at a temperature of 550° C at one face and 50° C on the other. The thermal conductivity of stainless steel at 300° C is 19.1 W/m K. Calculate the heat transferred through the material per unit area.
 - b) In what way is the science of heat transfer different from thermodynamics? Explain. [5+5]

OR

- 3. Derive the general conduction equation for
 a) Cylindrical co-ordinate
 b) Spherical co-ordinates, the system being with uniform heat generation and unsteady state. [5+5]
- 4.a) Explain why the conductivity of metals decreases and conductivity of insulating material increases with increases in temperature.
 - b) A metallic plate, 3cm thick is maintained at 400° C on one side and 100° C on the other side. How much heat is transferred through the plate? Take k for the metallic plate as k=370 W/m-K. [5+5]

OR

- 5.a) What is critical thickness of insulation on a small diameter wire or pipe, explain its physical significance and derive an expression for the same.
 - b) Calculate the rate of heat loss for a red brick wall of length 5m, height 4m, and thickness 0.25m, the temperature of the inner surface is 110° C and that of the outer surface is 40° C. The thermal conductivity of red brick k = 0.70 W/m-K. Calculate also the temperature of the inner surface from the inner wall. [5+5]

- 6.a) Differentiate between mechanisms of heat transfer by free and forced convection. Mention some of the areas where these mechanisms are predominant.
 - b) Water at 75° C flows through a 0.005 m diameter tube with a velocity of 1m/s. If the tube wall temperature is 25° C, make calculations for the heat transfer coefficient. Use the correlation, St = 0.023 Re 0.2 Pr 0.667. The thermo-physical properties of water are: Thermal conductivity is 0.647 W/(m.K); Viscosity is 1.977 kg/h.m; Density is 1000 kg/m3; Specific heat 4.187 kJ/(kg.K). [5+5]

OR

- 7.a) Describe Buckingham's method of π -terms to formulate a dimensionally homogenous equation.
 - b) A flat plate 1m wide and 1.5 m long is to be maintained at 90° C in air when free stream temperature is 10° C. Determine the velocity at which air must flow over the plate so that the rate of energy dissipation from the plate is 3.75kW. [5+5]
- 8.a) Draw the boiling curve for pool boiling of water and explain flow regimes.
- b) Saturated steam at a temperature of 65° C condenses on a vertical surface at 55° C. Determine the thickness of the condensate film at locations 0.2 m and 1.0 m from the top. Also calculate condensate flow rate at these locations. [5+5]

OR

- 9.a) Derive an expression for the shape factor in case of a radiation exchange between two surfaces.
- b) Show that the emissive power if a black body is π times the intensity of emitted radiation. [5+5]
- 10.a) Derive an expression for LMTD in case of a counter flow heat exchanger.
 - b) A cross-flow heat exchanger with both fluids unmixed is used to heat water (Cp= 4.18 kJ/kgK) from 50° C to 90° C, flowing at the rate of 1.0 kg/s. Determine the overall heat transfer coefficient if the hot engine oil (Cp= 1.9 kJ/kgK) flowing at the rate of 3 kg/s enters at 100° C. The heat transfer area is 20 m^2 . [5+5]

OR

11. A chemical having specific heat of 3.3 kJ/kg k flowing at the rate of 20000 kg/hr enters a parallel flow heat exchanger at 120° C. The flow rate of cooling water is 50000 kg/hr with an inlet temperature of 20° C. The heat transfer area is 10 m^2 and the overall heat transfer coefficient is 1050 W/m²K. Find

a) The effectiveness of the heat exchanger

b) The outlet temperature of water and chemical.

Take for water, specific heat=4.186KJ/kg K.

[5+5]

---00000----

www.manaresults.co.in