Code No: 128BH

R15

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year II Semester Examinations, May - 2019 EHV AC TRANSMISSION

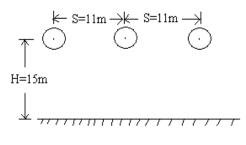
(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A


(25 Marks)

1.a)	What is the necessity of EHV AC Transmission?	[2]
b)	Derive the expression for equivalent radius of a bundle conductor.	[3]
c)	Write the charge potential relation of a multi conductor line.	[2]
d)	Derive the cosine law of variation of 'E' with ' θ '.	[3]
e)	What is Corona?	[2]
f)	Draw Bode frequency plot of positive and negative corona pulses.	[3]
g)	Write short notes on travelling waves in EHV.A.C lines.	[2]
h)	An overhead line with $Z_0=500$ ohms continues into a cable with $Z_c=200$ ohms. A surge	
	with a crest value of 2000 kV is coming towards the junction from the overhead line.	
	Calculate the voltage in the cable.	[3]
i)	Write short notes on Static Reactive compensating system.	[2]
j)	Draw the diagram showing extra long line with shunt reactors at ends and at an	
	intermediate station.	[3]

PART - B

(50 Marks)

2. The dimensions of the 3-phase, 400 kV horizontal line shown in the figure are H= 15 m, S = 11 m phase separation, Conductor is 2×3.18 cm diameter, Bundle spacing B= 45.72 cm. Calculate the matrix of inductance per km for transposed and un transposed lines.

OR

3.	Write down the procedure for diagonalization of Inductance matrix $L = \begin{bmatrix} L_S & I_T \\ L_m & I_T \end{bmatrix}$	$egin{bmatrix} L_m & L_m \ L_S & L_m \ L_m & L_S \end{bmatrix}$
	of a transposed line.	[10]
4.	Derive the expression for voltage (charge voltage relation) of two conductor line. OR	[10]
5.	Starting from the fundamentals derive the expression for potential relating multi conductor lines.	ions for [10]
6.a) b)	Explain in detail generation characteristics and limits of AN. Discuss the Corona loss formulae. OR	[5+5]
7.a) b)	Explain in detail the measurement of Audible Noise. Explain the corona pulses, their generation and properties.	[5+5]
8.	Derive the expression for total electrostatic field component of a 3-phase, single AC line.	le circuit [10]
9.	OR Derive the expressions for induced voltages in the un energized line when circuit is energized in the double circuit line.	only one [10]
10.a) b)	Explain cascade connection of components in shunt and series compensation. Explain the power circle diagram and its use in voltage control. OR	[5+5]
11.a) b)	Explain the voltage control using synchronous condenser. Explain the sub synchronous resonance in a series capacitor.	[5+5]

---00000---