Code No: 131AA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, May - 2018 MATHEMATICS-I (Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, ETM, MMT, AE, MIE, PTM, CEE,

MSNT)

Time: 3 hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)

[3]

1.a)	Find an integrating	factor	for the	following ec	quation ($\frac{dy}{dx} = e^{2x} + y - 1.$	[2]
		day	~		_		

- b) Find the solution of $\frac{dy}{dx} = -\frac{x}{y}$ at x=1 and y= $\sqrt{3}$.
- c) Find the value of α such that the vectors (1, 1, 0), (1, α , 0) and (1, 1, 1) are linearly dependent. [2] 2x - 3v + 5z = 1

d)	Determine whether the system of equations is consistent	3x + y - z = 2	[3]
		x + 4y - 6z = 1	

- e) If λ is the Eigen value of a matrix A then derive the Eigen value of (adjointA). [2]
- f) Taking A as a 2 ×2 matrix show that the Eigen values of A = the trace of A. [3]

g) If
$$u = x^{y}$$
 show that $\frac{\partial^{3} u}{\partial x^{2} \partial y} = \frac{\partial^{3} u}{\partial x \partial y \partial x}$.

- h) Find the stationary values of xy(a x y).
- i) Eliminate the arbitrary function f from the equation and form the partial differential equation $z = xy + f(x^2 + y^2)$. [2]

j) Eliminate the constants *a* and *b* from the equation: z = (y + a)(x + b). [3]

PART-B

(50 Marks)

[5+5]

[2]

[3]

- 2.a) Solve the Following differential equations: $y'' - 2y' + y = te^t + 4$, y(0) = 1, y'(0) = 1
 - b) Find the orthogonal trajectories for the family of curves $r^n \sin n \theta = a^n$. [5+5] OR
- 3.a) In an L-R circuit an e.m.f. of 10 sin t volts is applied. If I(0)=0, find the current I(t) in the circuit at any time t.
 - b) Solve the Following differential equation $y'' + 2y' + 5y = 4e^{-t}\cos 2t$, y(0) = 1, y'(0) = 0.

WWW.MANARESULTS.CO.IN

R16

Max. Marks: 75

- 4.a) Find an LU factorization for the matrix $\begin{bmatrix} 1 & 2 \\ -3 & -1 \end{bmatrix}$
 - b) In the following equations determine, for what value of "k" if any will the systems have i) unique solution ii) no solution iii) Infinitely many solutions k x + 2 y = 3
 - 2x 4y = -6OR [5+5]
- 5.a) Use either the Gaussian Elimination or the Gauss Jordan method to solve x + 2y - 3z = 9 2x - y + z = 0 4x - y + z = 4
 - b) Using the theory of matrices, find the point such that the line of intersection of the planes 3x + 2y + z = -1 and 2x y + 4z = 5 cuts the plane x + y + z = 4. [5+5]
- 6.a) Obtain the Eigen values of the following matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ and verify whether its Eigen vectors are orthogonal.
- b) Show that 0 is an Eigen value of a matrix A if and only if it is singular. [5+5] OR

7.a) If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 then show that $A^n = A^{n-2} + A^2 - I$ for $n \ge 3$. Hence find A^{50} .

b) Show that the matrix
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
 is not similar to a diagonal matrix. [5+5]

8.a) If
$$\sin u = \frac{x^2 y^2}{x+y}$$
 show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3 \tan u$.

b) If
$$f(0) = 0$$
 and $f'(x) = \frac{1}{1+x^2}$ then using Jacobians show that $f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)$.
[5+5]

OR

- 9.a) Expand $e^x \cos y$ in powers of x and $\left(y \frac{\pi}{2}\right) 0$.
- b) Show that the rectangular solid of maximum volume that can be inscribed in a given sphere is a cube. [5+5]

10. Find the general integrals of the linear partial differential equations
a)
$$y^2p - xy q = x(z - 2y)$$

b) $(y + zx)p - (x + yz)q = x^2 - y^2$. [5+5]
OR

11. Find complete integrals of the following equations a) p+q=pqb) $p^2q(x^2 + y^2) = p^2 + q.$ [5+5]

---00000----

WWW.MANARESULTS.CO.IN