Code No: 131AA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, May/June – 2019 **MATHEMATICS-I**

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, ETM, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)

- Solve the following differential equation $x \frac{dy}{dx} y = x^2$. [2] 1.a)
 - Find the complimentary function for the equation $\frac{d^4y}{dx^4} + 4y = \cos 2x + \cos 4x$. [3] b)
 - Find the value of k such that the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2. c) [2]
 - Find the LU decomposition of $A = \begin{bmatrix} 1 & 3 \\ 4 & -1 \end{bmatrix}$. d) [3]
 - e) If a square matrix A has an Eigen value λ then what is the Eigen value of the matrix kA^T where $k \neq 0$ is a scalar. [2]
 - f) If a matrix $A = \begin{bmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 2 \end{bmatrix}$ then what are the Eigen values of A^2 ? g) If $u = e^{xyz}$ find the value of $\frac{\partial^3 u}{\partial x \partial y \partial z}$. [3]
 - [2]
 - h) If $v = \frac{x^3y}{x^3 + y^3}$ find the value of $x \frac{\partial v}{\partial x} + y \frac{\partial u}{\partial y}$. [3]
 - Form the partial differential equation by eliminating the arbitrary constants a, b z = (x + a)(y + b).
 - <u>i)</u> Solve zp + yq = x. [3]

PART-B

(50 Marks)

- Solve $(D^2 4)y = x \sin x$ 2.a)
 - Find the current at any time t > 0 in a circuit having in series a constant electromotive b) force 40V, a resistor 10 Ω , and an inductor 0.2 H given that the initial current is zero. Find the current when emf is 150 cos200 t. [5+5]

- Solve $(D^2 + 2 D^2 + 1)v = x^2 \cos x$ 3.a)
 - Solve by the method of variation of parameters: $\frac{d^2y}{dx^2} y = \frac{2}{1+\alpha^2}$. b) [5+5]

Factorize the matrix by the LU decomposition method $\begin{bmatrix} 2 & -3 & 1 \\ 3 & 4 & 2 \\ 2 & -3 & 4 \end{bmatrix}$ 4. [10]

- For what values of λ and μ do the system of equations x+y+z=6, x+2y+3z=10, 5.a) $x+2y+\lambda z = \mu$ have i) no solution, ii) unique solution iii) more than one solution?
 - Find the value of k for which the system of equations: b) (k + 1)x + 8y = 4k, kx + (k = 3)y = 3k - 1 has infinitely many solutions. [5+5]
- Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ and obtain 6 A^{-1} and A^{3} . [10]

- OR Reduce the quadratic form $3x^2 + 3y^2 + 3z^2 2yz + 2zx + 2xy$ to its canonical form. 7.
- Determine the functional dependence and find the relation between $u = \frac{x-y}{x+y}$, $v = \frac{xy}{(x-y)^2}$. If $y_1 = \frac{x_2x_3}{x_1}$, $y_2 = \frac{x_3x_1}{x_2}$, $y_3 = \frac{x_1x_2}{x_3}$, Find the Jacobian of y_1, y_2, y_3 with respect to x_1, x_2, x_3 .

- Obtain the Taylor's expansion of $\tan^{-1} \frac{y}{x}$ about (1,1) upto and including second degree 9.a)
 - Find a point within a triangle such that the sum of the squares of its distances from the b) three angular points is a minimum. [5+5]
- 10. Solve the partial differential equations:

a)
$$(x^2 - yz)p + (y^2 - zx)q = (z^2 - xy)$$

b) $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y)z$. [5+5]

OR

- Solve the partial differential equations 11.
 - a) $p^2 + q^2 = z^2(x + y)$ b) $x^2p^2 + y^2q^2 = z$.

b)
$$x^2p^2 + y^2q^2 = z$$
. [5+5]

---00O00---