R16

Code No: 131AA JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, December – 2019/January - 2020 MATHEMATICS-I

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, ETM, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)

[2]

1.a) Find an integrating factor which makes the differential equation $x^2ydx - (x^3 + y^3)dy = 0$ into an exact differential equation. [2]

b) Find the general solution of
$$\frac{d^3y}{dx^3} - 14\frac{dy}{dx} + 8y = 0$$
. [3]

- c) Define the rank of a matrix.
- d) If the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & k \\ 3 & 3 & 4 \end{bmatrix}$ is 2 then find the value of k. [3]

e) If
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$$
 then find the Eigen values of $4A^{-1} + 3A + 2I$. [2]

f) Find the algebraic multiplicity of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. [3]

g) Find
$$\frac{\partial^2 u}{\partial x^2}$$
 and $\frac{\partial^2 u}{\partial y^2}$ if $u = x^3 + 3x^2y + y^3$. [2]

- h) Find the stationary points of $u(x, y) = \sin x \sin y \sin(x+y)$ where $0 < x < \pi$, $0 < y < \pi$. [3]
- i) Form the partial differential equation z = (x+a)(y+b). [2]
- j) Find the complete integral of $\sqrt{p} + \sqrt{q} = 1$. [3]

PART- B

(50 Marks)

- 2.a) Bacteria in a culture grows exponentially so that the initial number has doubled in three hours. How many times the initial number will be present after 9 hours.
 - Solve $(D^2 + 1)y = \sin x \sin 2x$. [5+5]

3.a) Find the orthogonal trajectories of $y^2 = ax^3$.

b)

b) Solve the differential equation
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = e^{2x}$$
. [5+5]

www.manaresults.co.in

4.a) If $a+b+c \neq 0$, show that the system of equations -2x+y+z=a, x-2y+z=b, x+y-2z=c has no solution. If a+b+c=0, show that it has infinitely many solutions.

b) Reduce the matrix $\begin{bmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0 \end{bmatrix}$ into Echelon form and hence find its rank. [5+5]

OR

- 5. Solve the following system by LU decomposition. 2x-3y+10z=3; -x+4y+2z=20; 5x+2y+z=-12[10]
- 6. Determine the modal matrix P of $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$. Verify that $P^{-1}AP$ is a diagonal

matrix.

OR

[10]

- 7. Reduce the quadratic form to canonical form by an orthogonal reduction and state the nature of the quadratic form $5x^2 + 26y^2 + 10z^2 + 6xy + 14xz + 4yz$. [10]
- 8.a) Prove that $u = \frac{x^2 y^2}{x^2 + y^2}$, $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent and find the relation between them.
 - b) Discuss the maxima and minima of $x^2y + xy^2 axy$. [5+5] OR
- 9.a) Given that x + y + z = a, find the maximum value of $x^m y^n z^p$.
 - b) A rectangular box open at the top is to have a volume of 32 cubic ft, find the dimensions of the box required least material for its construction. [5+5]
- 10.a) Solve $x^2 p^2 + y^2 q^2 = z^2$. b) Solve $(x^2 - yz) p + (y^2 - zx) q = (z^2 - xy)$. [5+5]
- 11.a) Form the partial differential equation by eliminating the arbitrary function form $z = yf(x^2 + y^2)$.

b) Solve the partial differential equation $\left(\frac{p}{2} + x\right)^2 + \left(\frac{q}{2} + y\right)^2 = 1.$ [5+5]

---00000----

www.manaresults.co.in