Code No: 131AC

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, May - 2018 ENGINEERING PHYSICS

(Common to CE, ME, MCT, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

1.a)	What is Diffraction grating?	[2]
b)	Distinguish between Fresnel and Fraunhoffer diffraction.	[3]
c)	Explain the phenomenon of double refraction.	[2]
d)	Write three important characteristics of laser.	[3]
e)	Define acceptance angle and Numerical aperture of an optical fibre.	[2]
f)	Explain the principle behind the optical fibre.	[3]
g)	Explain primitive cell and non- primitive cell.	[2]
h)	How do you obtain Miller indices for a given plane?	[3]
i)	Briefly explain Laue method.	[2]
j)	Explain the physical significance of Burger's vector.	[3]

PART-B

(50 Marks)

[5+5]

- 2.a) How the fringes are obtained in diffraction pattern and why they are unequally spaced.
- b) Derive an expression for intensity distribution of Fraunhoffer diffraction due to N parallel slits and obtain conditions for principal maxima, minima and secondary maxima. [5+5]

OR

- 3.a) Explain the Newton's ring experiment with neat diagram and show that the Diameter of the mth dark ring is given by $D_m = 2\sqrt{m\lambda R}$.
 - b) In Newton's rings experiment, diameter of 15th dark ring was found to be 0.59 cm and that of 5th dark ring was 0.336 cm. If radius of Plano-convex lens is 100 cm, calculate wavelength of light used. [5+5]
- 4.a) Explain the principle and working of Nicol's prism with neat diagram.
 - b) Write a short note on phenomena of Double Refraction.

OR

5. Describe with suitable diagram, the principle, construction and working of He - Ne laser system. [10]

- 6.a) Describe the structures of different types of optical fibres along with the light ray propagation paths.
 - b) Calculate the fractional index change for a given optical fibre if the refractive indices of the core and cladding are 1.563 and 1.498 respectively. [5+5]

OR

- 7.a) Derive an expression for a Numerical aperture of an optical fibre.
 - b) What are the applications of optical fibres?

[5+5]

- 8.a) Describe in detail the structure of diamond.
- b) Germanium crystallizes in the diamond cubic structure with eight atoms in an unit cell. The lattice constant is 5.62 A⁰. Calculate the density of Germanium. [5+5]

OR

- 9. Derive an expression for the interplanar spacing between two adjacent planes in an orthogonal lattice. [10]
- 10. Explain the powder x-ray diffraction method for the analysis of the crystal structure.

[10]

OR

11. Explain in detail the different kinds of surface defects.

[10]

---00O00---