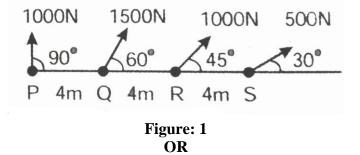
Code No: 131AE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B .Tech I Year I Semester Examinations, December - 2018 ENGINEERING MECHANICS

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, ETM, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

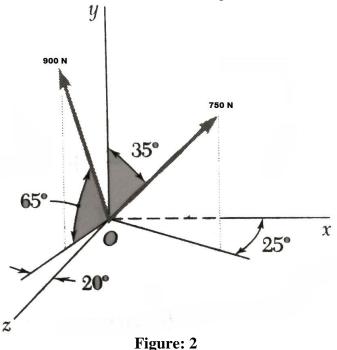

PART - A

	(.	25 Marks)
1.a)	What is triangle law of force?	[2]
b)	State and explain Lami's theorem.	[3]
c)	What forces are involved in ladder wall application if the wall is rough.	[2]
d)	What are the laws of friction?	[3]
e)	What does the second theorem of pappus indicate?	[2]
f)	Define radius of gyration.	[3]
g)	What is the moment of inertia of a sphere?	[2]
h)	What is the mass moment of inertia of a hollow cylinder with outer rad	dius, inner
	radius and length as R, r and L respectively?	[3]
i)	What is the principle of conservation of energy?	[2]
j)	Explain D Alemberts principle.	[3]

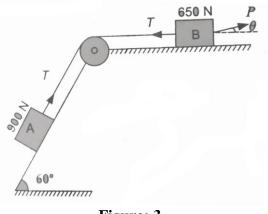
PART - B

(50 Marks)

- 2.a) What is Newton's first law of motion and law of transmissibility of forces?
 - b) Find the magnitude and direction of the resultant force. Also find the position of the resultant force from point P of the bar PS (Figure 1). [5+5]


WWW.MANARESULTS.CO.IN

R16

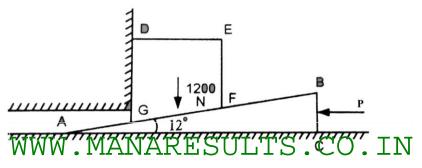
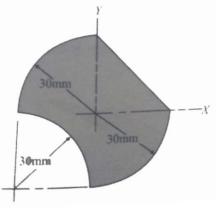

Max. Marks: 75

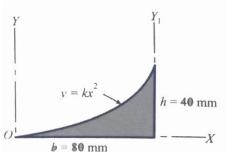
(25 Marks)

3. Determine x,y,z, components of 750 N and 900 N and also the angles θ_x , θ_y and θ_z that the force forms with coordinate axes shown in figure 2. [10]

What is the least value of P to cause motion of the system shown in figure 3 towards the right. Also find θ. Assume coefficient of friction to be 0.2. Body A and B weighs 900 N and 650 N respectively. [10]

5. A 12⁰ wedge resting on a horizontal floor supports a block of weight 1200 N as shown in Figure 4. The block is to be raised by applying a horizontal force P to the wedge. Assume coefficient of friction between all contact surfaces to be 0.28. Determine minimum horizontal force applied to the wedge to raise the block. [10]


Figure: 4

6. Locate the centroid of the shaded area as shown in Figure 5.

7. Find the moment of inertia about Y axis of the shaded area under the second degree curve as shown in Figure 6. [10]

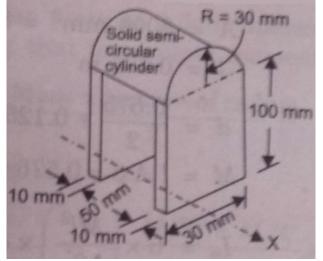
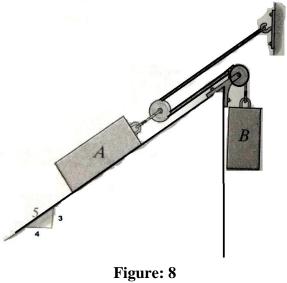
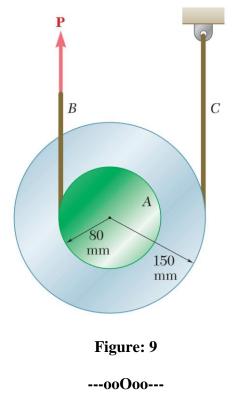


Figure: 6

8. Derive the mass moment of inertia of a cone about its base having radius r and height h. [10]


OR

9. Determine the radius of gyration in m about the centroidal X axis of the casting as shown in figure 7. [10]


WWW.MANAResULTS.CO.IN

10. Block A has a weight of 300 N and block B has a weight of 50 N. Determine the speed of block A after it moves 2 m down the plane, starting from the rest (Figure 8). [10]

OR

- 11.a) A train of weight 1800 kN ascends a slope of 1 in 100 with a uniform speed of 40 kmph. If the track resistance is 5 N per kN of superimposed load, find the power spent by the engine.
 - b) The double pulley shown in figure 9 has a mass of 3 kg and a radius of gyration of 100 mm. knowing that pulley is at rest, a force of 24 N is applied to cord B, determine the velocity of the centre of the pulley after 1.5 sec and tension in cord C. [5+5]

WWW.MANARESULTS.CO.IN