JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech I Year II Semester Examinations, August - 2018

MATHEMATICS - III
((Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, ETM, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Find the mean and variance of the probability distribution having pdf, $f(x)=e^{-x}, x>0$.
b) A fair coin is tossed until a head or consecutive five tails occurs. Find the discrete probability distribution.
c) Write the conditions of validity of χ^{2}-test.
d) Construct sampling distribution of means for the population 3, 7, 11, 15 by drawing samples of size two without replacement. Determine i) μ ii) σ iii) Sampling distribution of means.
e) Discuss types of errors of the test of hypothesis.
f) Give the graphical interpretation of the bisection method.
g) Write the iterative formula for finding $\sqrt[3]{N}$ using method of false position.
h) Explain briefly about method of least square.
i) Derive Trapezoidal rule for computing integral $\int_{a}^{b} f(x) d x$.
j) What are the limitations of Taylor's series method?

PART-B

(50 Marks)
2.a) Let $f(x)=3 x^{2}$, when $0 \leq x \leq 1$ be the probability density function of a continuous random variable X. Determine a and b such that
i) $\mathrm{P}(\mathrm{X} \leq a)=\mathrm{P}(\mathrm{X}>a)$
ii) $\mathrm{P}(\mathrm{X}>b)=0.05$.
b) Probability density function of a random variable X is
$f(x)=\left\{\begin{array}{ll}\frac{1}{2} \sin x, & 0 \leq x \leq \pi \\ 0, & \text { elsewhere }\end{array}\right.$.
Find the mean, mode and median of the distribution.
OR
3.a) A die is cast until 6 appears. What is the probability that it must be cast more than 5 times?
b) The marks obtained in mathematics by 1000 students is normally distributed with mean 78% and standard deviation 11%. Determine:
i) What was the highest mark obtained by the lowest 25% students?

4.a) Explain why the larger variance is placed in the numerator of the statistic F. Discuss the application of F-test in testing if two variances are homogenous.
b) A sample of 11 rats from a central population had an average blood viscosity of 3.92 with a standard deviation of 0.61 . Estimate the 95% confidence limits for the mean blood viscosity of the population.
[5+5]

OR

5.a) The mean voltage of a battery is 15 and standard deviation 0.2 . Find the probability that four such batteries connected in series will have a combined voltage of 60.8 or more volts.
b) Discuss critical region and level of significance with example.
6.a) Suppose the diameter of motor shafts in a lot have a mean of 0.249 inches and standard deviation if 0.003 inches. The inner diameter of bearings in another lot have a mean of 0.255 inches and standard deviation of 0.002 inches. If a shaft and bearing are selected at random, find the probability that the shaft will not fit inside the bearing. Assume that both dimensions are normally distributed.
b) A sample of 400 items is taken from a normal population whose mean is 4 and variance 4 . If the sample mean is 4.45 , can the samples be regarded as a simple sample?
[5+5]

OR

7. In a sample of 600 students of a certain college 400 are found to use ball pens. In another college from a sample of 900 students 450 were found to use ball pens. Test whether two colleges are significantly different with respect to the habit of using ball pens?
8. Estimate y at $x=5$ by fitting a least squares curve of the form $y=\frac{b}{x(x-a)}$ to the following data

x	3.6	4.8	6.0	7.2	8.4	9.6	10.8
y	0.83	0.31	0.17	0.10	0.07	0.05	0.04

OR

9. Show that the Gauss-Seidel methods diverge for solving the system of equations $2 \mathrm{x}+3 \mathrm{y}+\mathrm{z}=-1 ; 3 \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}=1 ; \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}=6$.
10. Find the successive approximate solution of the differential equation $y^{\prime}=y, y(0)=1$ by Picard's method and compare it with exact solution.

OR

11. Use Runge-Kutta method of order four to find y when $x=0.6$ in steps of 0.2 given that
$\frac{d y}{d x}=1+y^{2}, y(0)=0$.

--00O00--

