Code No: 132AF

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, May/June - 2017 APPLIED PHYSICS

(Common to CE, ME, MCT, MMT, MIE, CEE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

		(25 Marks)
1.a)	Define stress and mention its types.	[2]
b)	What is young's modulus?	[3]
c)	What is meant by acoustics of building?	[2]
d)	What are the factors affecting the acoustics quality of the building?	[3]
e)	Distinguish between audible, infrasonic and ultrasonic waves.	[2]
f)	Define piezoelectric effect.	[3]
g)	What is meant by polarization in a dielectric material?	[2]
h)	What is meant by dielectric loss?	[3]
i)	Define magnetic dipole and magnetic flux density.	[2]
j)	What are different types of magnetic materials?	[3]

PART-B

(50 Marks)

- 2.a) Explain various kinds of modulii of elasticity.
 - b) Find the amount of work done in twisting the steel wire of radius 2mm and length 50cm through an angle 45° . The rigidity modulus of steel is 8×10^{8} Nm⁻². [5+5]

OR

- 3.a) Derive the rigidity modulus of the wire using Torsional pendulum.
 - b) How much force is required to stretch a steel wire to double its length when its area of cross section is 2 sq cm and Young's modulus is $2 \times 10^{11} \text{ N/m}^2$. [5+5]
- 4.a) What are the basic requirements of an acoustically good hall?
 - b) Explain the various factors that affect architectural acoustics and suggest their remedies? [5+5]

OR

- 5.a) Define and explain the sound absorption coefficient of materials.
 - b) Derive Sabine's mathematical relation for reverberation time. [5+5]

- 6.a) Explain the construction and production of ultrasonic waves using magnetostriction method.
- b) Write notes on applications of ultrasonic waves.

[5+5]

OR

- 7.a) Explain the construction and production of ultrasonic waves using piezoelectric method.
 - b) How are ultrasonic waves used in non-destructive testing of materials?

[5+5]

- 8.a) What is orientation polarization? Derive an expression for the mean dipole moment when a polar material is subjected to an external field.
 - b) The dielectric constant of helium, measured at 0^{0} C and 1 atmosphere is ϵ_{r} =1.0000684. Under these conditions the gas contains 2.7×10^{25} atoms/m³. Calculate the radius of the electron cloud. Also calculate the displacement when a helium atom is subjected to an electric field of 10^{6} V/m?

OR

- 9.a) Discuss in detail the origin of ferroelectricity in barium titanate.
 - b) If the relative permittivity of sulphur is 4.0. Calculate its atomic polarizability. [Given that sulphur in cubic form has a density of 2.08×10^3 kg/m³ and its atomic weight is 32].

[5+5]

- 10.a) Explain in detail domain theory of ferromagnetism.
 - b) The saturation magnetic induction of nickel is 0.65wb/m². If the density of nickel is 8906 kg/m³ and its atomic weight is 58.7, calculate the magnetic moment of the nickel atom in Bohr magneton. [5+5]

OR

- 11.a) What is Meissner effect? Explain.
 - b) Write applications of superconductivity.

[5+5]