Code No: 132AJ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, May - 2019 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (Common to CE, ME, MCT, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

		(25 Marks	;)
1.a)	State Kirchoff's laws.	[2]	
b)	Draw the wave forms for voltage, current of pure inductor when excited by	a sinusoida	ıl
	voltage.	[3]	
c)	State maximum power transfer theorem.	[2]	
d)	Derive the expression for resonant frequency of a RLC series circuit.	[3]	
e)	Draw the V-I characteristic of a PN diode and show the shift with	increase in	n
	temperature.	[2]	
f)	What is the purpose of using filters with rectifiers?	[3]	
g)	Define h_{ie} and h_{re} .	[2]	
h)	What are the demerits of fixed bias method of a transistor?	[3]	
i)	Explain principle of operation of SCR.	[2]	
j)	Compare BJT and FET.	[3]	

PART-B

(50 Marks)

- 2.a) Differentiate dependent and independent sources.
 - b) Find the power in 30Ω resistance using nodal analysis for the circuit shown in figure 1.

[5+5]

- 3.a) A wire carries a current, which is a combination of a d.c current of 10A and a sinusoidal current with a peak value of 10A. Determine RMS value of the resultant.
 - b) An impedance $z_1 = (6+j8)\Omega$ is connected in series with a parallel combination of impedances $z_2 = (10+j6)\Omega$, $z_3 = (8-j10)\Omega$ and is connected to a 300V, 50Hz supply. Find the total active power, reactive power and power factor of the circuit. [5+5]

- 4.a) A series RLC circuit with $R = 100\Omega$, L = 0.6H and $C = 45\mu F$ is applied a voltage of $100\angle0^{0}V$ with variable frequency. Calculate resonant frequency, current at resonance, voltage across R, L and C at resonance.
 - b) Derive the expression for half power frequencies of a RLC series resonant circuit. [5+5]

5.a) For the circuit shown in the figure 2 draw current locus diagram.

Figure: 2

b) By using superposition theorem find the current in the 6Ω resistance of the following circuit shown in figure 3. [5+5]

- 6.a) Define the terms dynamic resistance of a diode and 'Diffusion capacitance of a diode'.
 - b) Explain how capacitor filter improves the performance of a full wave rectifier. [5+5]

 OR

7.a) Compare the characteristics of centre tapped transformer type and bridge type full wave Rectifiers.

- b) Draw the equivalent circuit and V-I characteristic of ideal and piecewise linear model of a PN junction diode. [5+5]
- 8.a) Draw the simplified h-parameter equivalent circuit of BJT in CB configuration and derive expressions for A_v , A_i , Z_i and Z_o .
 - b) Explain how bias stabilization and compensation are done using diodes. [5+5]

 OR
- 9.a) Explain voltage divider biasing method with relevant circuit diagrams and equations.
 - b) Compare CE, CB and CC characteristics of a BJT. [5+5]
- 10.a) Explain the construction and principle of operation of JFET.
 - b) Explain how zener diode acts as a voltage regulator. [5+5]

 OR
- 11.a) Draw the energy band diagram of tunnel diode and explain tunneling phenomenon. Draw its V-I characteristics.
 - b) Explain the working principle of varactor diode. [5+5]