JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year II Semester Examinations, May - 2019

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING
(Common to CE, ME, MCT, MMT, AE, MIE, PTM, CEE, MSNT)
Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A
(25 Marks)
1.a) State Kirchoff's laws.
b) Draw the wave forms for voltage, current of pure inductor when excited by a sinusoidal voltage.
c) State maximum power transfer theorem.
d) Derive the expression for resonant frequency of a RLC series circuit.
e) Draw the V-I characteristic of a PN diode and show the shift with increase in temperature.
f) What is the purpose of using filters with rectifiers?
g) Define $h_{i e}$ and $h_{r e}$.
h) What are the demerits of fixed bias method of a transistor?
i) Explain principle of operation of SCR.
j) Compare BJT and FET.

PART-B

(50 Marks)
2.a) Differentiate dependent and independent sources.
b) Find the power in 30Ω resistance using nodal analysis for the circuit shown in figure 1 .
[5+5]

3.a) A wire carries a current, which is a combination of a d.c current of 10 A and a sinusoidal current with a peak value of 10A. Determine RMS value of the resultant.
b) An impedance $z_{1}=(6+j 8) \Omega$ is connected in series with a parallel combination of impedances $z_{2}=(10+j 6) \Omega, z_{3}=(8-j 10) \Omega$ and is connected to a $300 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find the total active power, reactive power and power factor of the circuit.
4.a) A series RLC circuit with $\mathrm{R}=100 \Omega, \mathrm{~L}=0.6 \mathrm{H}$ and $\mathrm{C}=45 \mu \mathrm{~F}$ is applied a voltage of $100 \angle 0^{\circ} V$ with variable frequency. Calculate resonant frequency, current at resonance, voltage across R, L and C at resonance.
b) Derive the expression for half power frequencies of a RLC series resonant circuit. [5+5]

OR

5.a) For the circuit shown in the figure 2 draw current locus diagram.

$$
x=j 20 \Omega
$$

Figure: 2
b) By using superposition theorem find the current in the 6Ω resistance of the following circuit shown in figure 3.
[5+5]

Figure: 3
6.a) Define the terms dynamic resistance of a diode and ' Diffusion capacitance of a diode'.
b) Explain how capacitor filter improves the performance of a full wave rectifier. [5+5]

OR

7.a) Compare the characteristics of centre tapped transformer type and bridge type full wave Rectifiers.
b) Draw the equivalent circuit and V-I characteristic of ideal and piecewise linear model of a PN junction diode.
[5+5]
8.a) Draw the simplified h-parameter equivalent circuit of BJT in CB configuration and derive expressions for $\mathrm{A}_{\mathrm{v}}, \mathrm{A}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{i}}$ and Z_{o}.
b) Explain how bias stabilization and compensation are done using diodes.

OR
9.a) Explain voltage divider biasing method with relevant circuit diagrams and equations.
b) Compare CE, CB and CC characteristics of a BJT.
10.a) Explain the construction and principle of operation of JFET.
b) Explain how zener diode acts as a voltage regulator.

OR

11.a) Draw the energy band diagram of tunnel diode and explain tunneling phenomenon. Draw its V-I characteristics.
b) Explain the working principle of varactor diode.

