JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
 B.Tech I Year II Semester Examinations, August - 2018 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (Common to CE, ME, MCT, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Write the VI relationship for $\mathrm{R}, \mathrm{L}, \mathrm{C}$ elements.
b) Draw wave forms for voltage, current, power for a pure capacitance when excited by a sinusoidal voltage.
c) State super position theorem.
d) Define bandwidth and quality factor for RLC series resonant circuit and give expression.
e) Write diode current equation and mention how it supports reverse bias condition. [2]
f) Draw the circuit of full wave bridge rectifier with load.
g) Define h-parameters in CE configuration of BJT.
h) Compare CE and CB characteristics of a transistor.
i) Draw the symbols of SCR and varactor diode.
j) What is pinch-off voltage for a JFET?

PART-B

(50 Marks)
2.a) State and explain Kirchoff's laws.
b) Using node voltage method to find the current in the 10Ω resistance of the following circuit shown in figure1.
[5+5]

Figure: 1 OR
3.a) Derive the expressions for average value, RMS value crest factor and form factor for a sinusoidal wave form.
b) A resistance of 60Ω is connected in series with a pure inductor of 350 mH . The circuit is connected across a 50 Hz sinusoidal supply and the voltage across resistance is 150 V . Calculate the supply voltage.
4.a) Derive the expressions for resonant frequency, half power frequencies for a RLC series circuit.
b) An RLC circuit comprising of a 10Ω resistance is to have a bandwidth of $100 \mathrm{rad} / \mathrm{s}$. Determine the value of capacitance to make the system to resonate at $400 \mathrm{rad} / \mathrm{s}$. [7+3]

OR

5.a) Use Thevenins theorem to find the current in the load resistance R_{L} of the following circuit shown in figure 2.

Figure: 2
b) Calculate the load current in the following circuit shown in figure 3 using Millman's Theorem.

Figure: 3
6.a) Draw volt-Ampere characteristic of a PN junction diode and explain.
b) Define 'Ripple Factor' and derive an expression for ripple factor of a full wave rectifier.

OR

7.a) Differentiate between static and dynamic resistances of a diode.
b) Explain how a centre tapped transformer type full wave rectifier works with suitable schematic and waveforms.
8.a) Draw the h-parameter equivalent circuit of BJT in CC configuration. Derive expressions for A_{v} and Z_{i}.
b) Derive expression for stability factor(s) of voltage divider bias configuration. [5+5]

OR

9.a) Explain the Emitter feedback bias method with relevant diagram and mathematical expression.
b) Draw h-Parameter equivalent circuits of BJT in complete and simplified CB configuration.
10.a) Explain how zener breakdown Occurs. Indicate breakdown region zener-diode characteristics.
b) Compare BJT and FET.

OR

11. Explain the construction and principle of operation of a) JFET
b) Tunnel diode.
--00OOo--
