R16

Code No: 133BK

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2018 NETWORK THEORY

(Electrical and Electronics Engineering)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

		(25 Marks)
1.a)	What is cut set matrix?	[2]
b)	Define: i) Flux ii) Reluctance iii) M.M.F.	[3]
c)	What is balanced supply and balanced load?	[2]
d)	What is the significance of phase sequence?	[3]
e)	Sketch the DC response of RL circuit and response curve.	[2]
f)	Define time constant of R-C circuit excited d.c source.	[3]
g)	Define Port and Two-port network.	[2]
h)	Two two-port networks with transmission parameters A ₁ , B ₁ , C ₁ , D ₁ and A ₂ , B ₂ , C ₂ , D ₂	
	respectively are cascaded. What is the transmission parameter matrix of	the cascaded
	network?	[3]
i)	What is the function of a band elimination filter?	[2]
j)	What is a high pass filter? In what respects it is different from a low pass filter	er? [3]

PART-B

(50 Marks)

- 2.a) Explain self inductance and mutual inductance.
 - b) Find the value of XL in the coupled network shown in figure 1 for making it series resonant. [5+5]

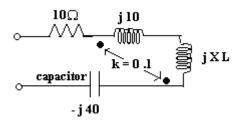


Figure: 1 OR

3.a) Obtain tie-set schedule for the network shown in figure 2.

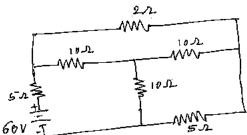


Figure: 2

b) Explain Faradays law of electromagnetic Induction.

[5+5]

4.a) An unbalanced Δ connected load is connected across a balanced 3 phase RYB 440V supply. Find the wattmeter reading connected in the circuit shown in figure 3.

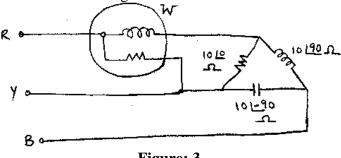


Figure: 3

b) Three impedances $Z_a = 6\angle 90^0$, $Z_b = 6\angle 0^0$ and $Z_c = 6\angle -90^0$ ohms are connected in star. Calculate the values of Z_x , Z_y and Z_z of the equivalent delta. Derive the formula used.

[5+5]

OR

- 5. A balanced three phase three wire system has a Y-connected load. Each phase contains three loads in parallel: -j $100~\Omega$, $100~\Omega$ and $50+j50~\Omega$. Assume positive phase sequence with $V_{ab}=400 \angle 0^{\circ}$ volts. Find (i) V_{an} (ii) I_{aA} (iii) The power factor of the load (iv) The total power drawn by the load. [10]
- 6.a) The switch in Figure 4 has been in position A for a long time. At t = 0, the switch moves to B. Determine v(t) for t > 0 and calculate its value at t = 1 s and 4 s.

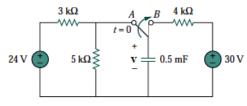


Figure: 4

b) Find the Capacitor voltage for t<0 and t>0 for each circuit shown figure 5. [5+5]

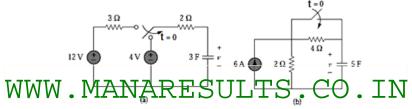


Figure: 5

7.a) At t = 0, switch 1 in Figure 6 is closed, and switch 2 is closed 4 s later. Find i(t) for t > 0. Calculate i for t = 2 s and t = 5 s.

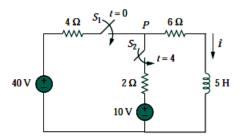
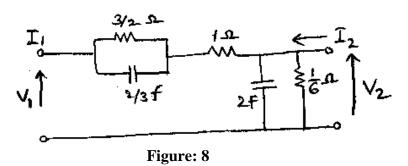



Figure: 6

b) The switch has been in position **a** for a long time as shown in figure 7, At t=0 it moves to position **b**. Calculate i(t) for all t>0. [5+5]

8.a) Explain different types network functions as applied to single port and two port network. Obtain Y_{12} of the given network shown in figure 8.

b) Obtain the relation between Y and Z parameters.

[5+5]

OR

9.a) Find driving point impedances Z_{11} and Z_{22} transfer impedances Z_{21} and Z_{12} for the network shown in figure 9.

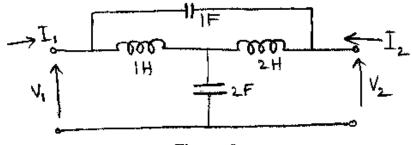


Figure: 9

b) Obtain the relationship between Z and h parameters WWW. MANARE SULTS.CO.IN

[5+5]

10. Derive the equations to find the inductances and capacitances of a constant K high passfilter. [10]

OR

11. Explain low pass filters. Discuss the design considerations of K type-low pass filters. [10]

---00000---