JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year II Semester Examinations, May - 2019

MATHEMATICS-II
(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, MMT, AE, MIE, PTM)

Time: 3 hours

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

1.a) Solve $y=a \sqrt{1+p^{2}}$.
b) Solve $\frac{1}{D^{2}} x^{4}$.
c) Evaluate $\int_{x=1}^{3} \int_{y=0}^{1} x y^{2} d y d x$.
d) If $\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ then evaluate $\nabla^{2}\left(r^{2}\right)$.
e) Find the value of $\int_{V}(\vec{l}+\vec{j}+\vec{k}) d V$.
f) Find the integrating factor of $\frac{d y}{d x}+2 x y=e^{-x^{2}}$.
g) \quad Solve $\left(D^{3}-4 D^{2}\right) y=5$.
h) Find the limits after changing the order of integration for $\int_{0}^{b a / b \sqrt{b^{2}-y^{2}}} \int_{0} f(x y) d y d x$.
i) Find a unit vector normal to the surface $x^{3}+y^{3}+3 x y z=3$.
j) If $\vec{F}(t)=x \vec{\imath}+2 y \vec{j}+z \vec{k}$ then evaluate $\int_{1}^{2} \operatorname{curl} \vec{F}(t) d t$.

PART-B

(50 Marks)
2.a) Solve $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=4 x^{2}, y(0)=0$.
b) If 30% of a radioactive substance disappears in 10 days, how long will it take for 90% of it to disappear?

OR
3.a) Solve $\left(y+y^{2}\right) d x+x y d y=0$.
b) Solve $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$.
4.a) Solve $\left(D^{2}+4\right) y=\tan 2 x$ by variation of parameters.
b) $\operatorname{Solve}\left(D^{3}+4 D\right) y=5+\sin 2 x$.

OR

5.a) Solve $\left(D^{2}+4 D+3\right) y=e^{e^{x}}$.
b) $\operatorname{Solve}\left(D^{2}+1\right) y=x^{2} \sin 2 x$.
6.a) Evaluate $\int_{0}^{\pi} \int_{0}^{a(1+\cos \theta)} r^{2} \cos \theta d r d \theta$.
b) Evaluate $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} d z d y d x$.
7.a) Change into polar co-ordinates and evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right) d y d x}$.
b) Show that the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ is $\frac{16}{3} a^{2}$.
8.a) Find the angle between the normal to the surface $x y=z^{2}$ at the points $(4,1,2)$ and (3, 3, -3).
b) Prove that $\nabla \cdot(\vec{A} \times \vec{B})=\vec{B} \cdot(\nabla \times \vec{A})-\vec{A} \cdot(\nabla \times \vec{B})$.

OR

9.a) Find the angle of intersection of the spheres $x^{2}+y^{2}+z^{2}=39$ and $x^{2}+y^{2}+z^{2}+$ $4 x-6 y-8 z+52=0$ at the point $(4,-3,2)$.
b) A vector field is given by $\vec{A}=\left(x^{2}+x y^{2}\right) \vec{\imath}+\left(y^{2}+x^{2} y\right) \vec{\jmath}$. Show that the field is irrotational and find the scalar potential.
10. Find the work done in moving a particle in the force field $\vec{F}=3 x^{2} \vec{\imath}+(2 x z-y) \vec{\jmath}+z \vec{k}$ along the straight line from $(0,0,0)$ to $(2,1,3)$.

OR

11.a) Evaluate $\iint_{S} \bar{F} . \hat{n} d s$ if $\bar{F}=2 x y \bar{\imath}+y z^{2} \bar{J}+x z \bar{k}$ over the parallelepiped $\mathrm{x}=0, \mathrm{y}=0$, $\mathrm{z}=0, \mathrm{x}=2, \mathrm{y}=1, \mathrm{z}=3$.
b) If $\bar{F}=\left(3 x^{2}-2 z\right) \bar{\imath}-4 x y \bar{\jmath}-5 x \bar{k}$, Evaluate $\int_{v} \operatorname{curl} \bar{F} d v$, where v is volume bounded by planes $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$ and $3 \mathrm{x}+2 \mathrm{y}-3 \mathrm{z}=6$.

