Code No: 152AA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, August - 2019 **MATHEMATICS-II**

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, MMT, AE, MIE, PTM) **Time: 3 hours** Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

1.a) b)	State the Newton's law of cooling. Solve The D.E $(D^2 + 2D + 1)y = 0$.	(25 Marks) [2] [2]
c)	Evaluate $\int_{0}^{2} \int_{0}^{1} xy dy dx$.	[2]
d)	Find $\nabla . \overline{r}$	[2]
e)	State stoke's theorem.	[2]
f)	Find the integral factor of the differential equation of $\frac{dy}{dx} - y \sin 2x = \cot x$.	[3]
g)	Find the P.I of $(D^2 + 5D + 6)y = 1 + 2x + x^2$.	[3]
h)	Evaluate $\int_{\theta=0}^{\pi} \int_{r=0}^{a\cos\theta} dr d\theta$	[3]
i)	If $\overline{f} = x^2 y \overline{i} - 2xz \overline{j} + 2yz \overline{k}$ then find Curl \overline{f}	[3]
j)	Find the work done in moving a particle in the force field $\overline{F} = xi - j + i$ straight line from (0,0,0) to (2,1,3).	k along the [3]
PART-B		
(50 Marks)		
2.a)	Solve the D.E $p^2 + 2xp - 3x^2 = 0$ for p.	
b)	The temperature of the surrounding air is 20° C. The temperature of a hot body reduces	

The temperature of the surrounding air is 20°C. The temperature of a hot body reduce from 100° C to 70° C in 1 hr. Find the temperature of the body after 2 hrs. [5+5]

OR

Solve the D.E $xp^2 - 2yp + x = 0$ for y. 3.a)

b) Solve the differential equation
$$(x^2 + 2\sin y)dx + (2x\cos y + y)dy$$
. [5+5]

4.a) Solve the D.E
$$(D^2 - 2D + 2)y = \sin x + e^{-2x}$$

b) Solve the D.E
$$(x+a)^2 y'' - 4(x+a)y' + 6y = x.$$
 [5+5]
OR

5.a) Solve the D.E
$$(D^2 - 4)y = \cosh(2x - 1) + e^{2x}$$

b) Solve the D.E
$$x^2y'' - xy' + 4y = x^2 \sin(\log x)$$
. [5+5]

www.manaresults.co.in

(25 Monka)

6.a) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} (x^2 + y^2) dx dy$ by changing in to polar co-ordinates.

b) Find the volume of ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 [5+5]
OR

7.a) By change of order of integration evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} dy dx$$

b) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dx \, dy \, dz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$$
 [5+5]

8.a) Find the directional derivative of $\phi = xyz$ at (1, -1, 1) along the direction which makes equal angles with the positive direction of x, y, z axes.

b) Prove that
$$\nabla^2(r^n) = n(n+1)r^{n-2}$$
 [5+5]

OR

- 9.a) Find the constants 'a' and 'b' such that the surfaces $5x^2 2yz 9x = 0$ and $ax^2y + bz^3 = 4$ cuts orthogonally at (1,-1,2).
 - b) Prove that $\overline{F} = 2xy \sin zi + x^2 \sin zj + x^2 y \cos zk$ is irrotational and find its scalar potential. [5+5]
- 10.a) Evaluate $\iiint_{V} f(x, y, z) dx dy dz$ where $\overline{f} = 3i j 2k$ bounded by the volume (v) by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4.
 - b) Evaluate $\iint_{s} x^{3} dy dz + x^{2} y dx dz + x^{2} z dx dy$ over the surface bounded by the planes z = 0, z = band the cylinder $x^{2} + y^{2} = a^{2}$ using Gauss divergence theorem [5+5]
- 11.a) Find the flux of vector function $\overline{F} = (x 2z)\overline{i} (x + 3y)\overline{j} + (5x + y)\overline{k}$ through the upper side of the triangle ABC with vertices (1,0,0), (0,1,0), (0,0,1).
 - b) Prove that $\oint_c (f \nabla g) dr = \int_s (\nabla f \times \nabla f) . \overline{n} ds$ using stoke's theorem. [5+5]

---00000----

www.manaresults.co.in