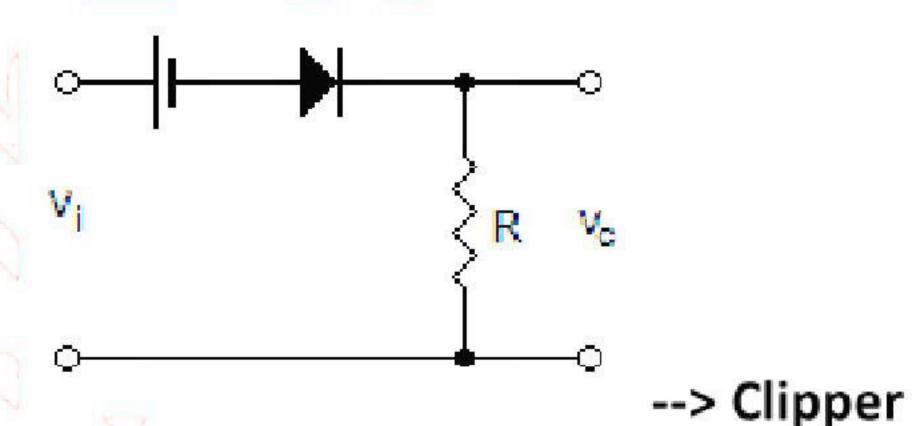

- Q)The following statement about an RC HPF is not correct--> **The gain attains unity at f=∞**
- Q)As the time constant of RC HPF increases the amount of tilt is--> b) Decreases
- Q)In a high Pass RC circuit, the output (Vo) is taken across--> Resistor
- Q)The voltage across a capacitor can change instantaneously provided--> An infinite current flows through it
- Q)The response of a high pass RC circuit to a step input of amplitude V is--> Ve^{-t/RC}
- Q)A square wave form is transmitted through an RC HPF, and we find--> The flat portion of the waveform is effected
- Q)At very low frequencies the capacitor acts as a--> Open circuit
- Q)The average value of output of an RC HPF is always equal to--> Zero
- Q)The response of a low-pass RC circuit to a step input is--> exponential rise
- Q)The expression for transmission error (et), when ramp input is applied to a Low passRC circuit for the condition RC << T is--> 4RC / T
- Q)The lower cutoff frequency of a low-pass RC circuit is--> Zero
- Q)Time required for Vo to reach 10% of the final value is given by--> 0.1RC
- Q)The average value of output of an RC LPF is always equal to--> The average value of input
- Q)Which circuit converts sqaure waveform to traingular waveform--> Integrator
- Q)The expression for transmission error (et), when ramp input is applied to a High passRC circuit for the condition RC >> T is--> T / 2RC
- Q)The process of converting pulses into pips by means of circuit of short time constant is called-> Peaking
- Q)A High pass RC circuit acts like a differentiator for the condition(RC = Time constant of the circuit & T= Time period of the input signal)--> RC<<T
- Q)A sqaure wave of peak to peak amplitude of 20V is passed through a good differentitor. The peak to peak amplitude of the output is--> Nearly 40V
- Q)The response of a differentiator circuit to a pulse input is--> spikes
- Q)AnRCintegrator and anRCdifferentiator can act as what types of filters, respectively?--> low-pass, high-pass
- Q)A step signal is applied to a cascade of two circuits with rise times t_{r1} =1s and t_{r2} =2s, the rise time of the output is--> 2.348s
- Q)If the capacitor in anRCintegrator shorts, the output--> is at ground
- Q)The rise time of the output of a low-pass RC circuit is given by--> 2.2 RC
- Q)A 10V step is applied to a RC low-pass circuit with R=100K Ω and C=100pF. The time for the capacitor to charge to 63.2% of final value is--> 10s
- Q)A low pass RC circuit acts like an integrator for the condition--> RC >>T
- Q)The response of an integrator circuit to a square wave input is--> triangular wave
- Q)The condition for perfect compensation in an attenuator is--> C1=R2C2/R1
- Q)Attenuator is used to--> Reduce the amplitude of a signal
- Q)Integrators are mostly preferred over differentiators because as frequency increases, the gain of an integrator--> **Decreases**
- Q)It is easier to stabilize _____ than _____ with respect to spurious oscillations--> An integrator, a differentiator
- Q)For perfect differentiation, the phase shift between the input and output must be--> 90°
- Q)For a high pass circuit to acts as a differentiator, ωRC must be less than equal to--> 0.01

- Q)Attenuators are compensated so that the attenuation--> independent of frequency
- Q)In a repetitive-pulseRCintegrator circuit, what would the steady-state voltage equal at the end of the fifth pulse? Assume aV_{in}of 20 V.--> **14.62 V**
- Q)A symmetrical square wave of 1KHz is applied to a high-pass circuit with $R=5K\Omega$ and C=1F. The percentage tilt of the output is--> 10 %
- Q)The higher cutoff frequency of a high-pass RC circuit is--> ∞
- Q)In an attenuator, the final output voltage is determined by--> resistor
- Q)An attenuator is said to be over compensated if--> R1C1>R2C2
- Q)An attenuator has R1=2M Ω , R2=3M Ω . Its attenuation factor is--> 1.5
- Q)In an attenuator, the initial output voltage is determined by--> Capacitor
- Q)To obtain a pulse from a step voltage, the RLC circuit should operate in the nighbourhood of--> Critical damping
- Q)The quality factor Q of a circuit, which is to ring for N number of cycles before the amplitude reduces to $1/\epsilon$ of its initial value is given by Q=--> πN
- Q)RL circuits are rarely used when a_____ time constant is required--> Large
- Q)When a pulse is transmitted through a low-pass circuit, its shape is preserved if the 3-dB frequency is--> Approximately equal to the reciprocal of the pulse width
- Q)The condition for a RLC circuit to ring for many cycles is (k is damping constant)--> k < 1
- Q)A circuit with Q=16 will ring for--> 5 cycles
- Q)The time constant of a series RL circuit is--> L/R
- Q)The response of a RLC circuit to a step input for damping constant k = 1, corresponds to--> critical damping

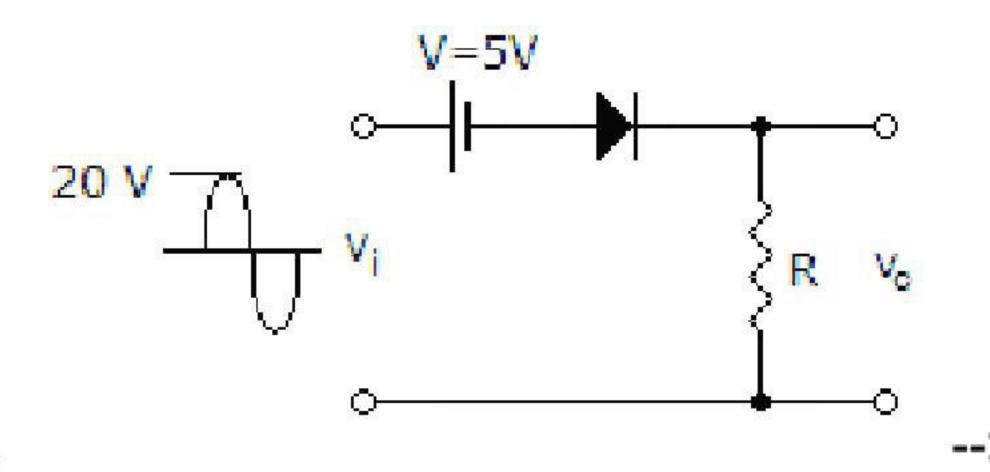
In the above figure D1 turns on when--> vi is more

positive than V1


In the given Figure D2 turns on when--> Vi is more

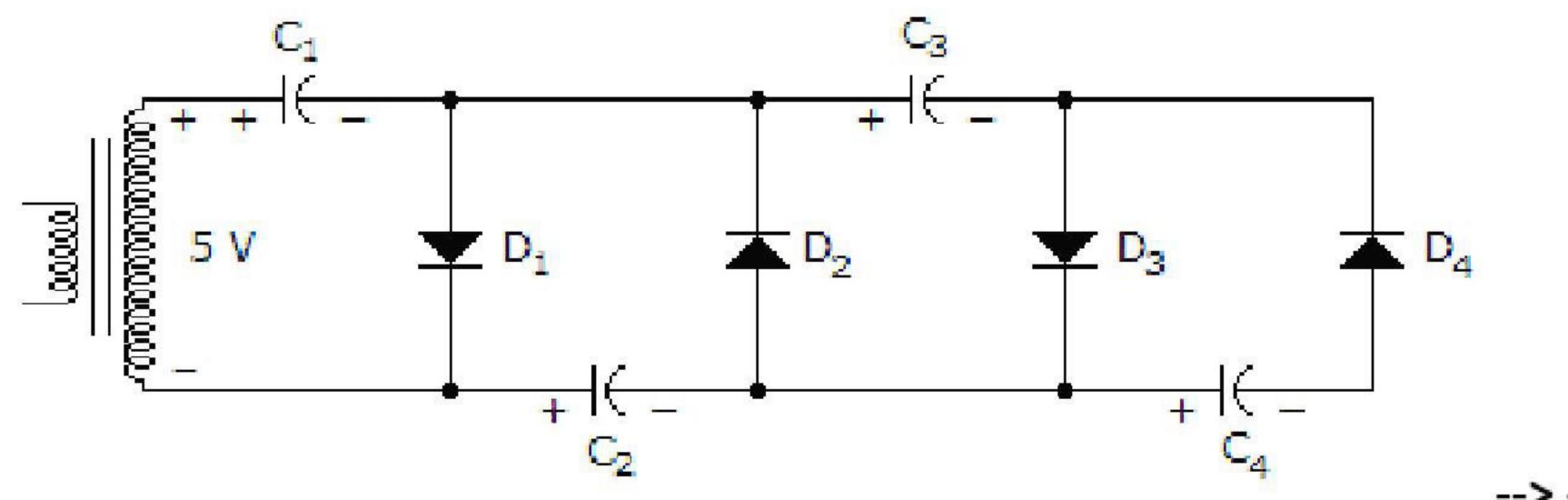
negative than V2

- Q)In a _____, when the diode is OFF, the output follows the input--> shunt diode clipper
- Q)A transistor has--> two nonlinearities
- Q)Clipping circuits are used to--> remove a part of the signals
- Q)What type of diode circuit is used to clip off portions of signal voltages above or below certain levels?--> clipper or limiter


- Q)The capacitive coupling network is a--> high pass filter
- Q)The process whereby the form of a non-sinusoidal signal is altered by transmission through a linear network is called--> linear wave shaping
- Q)A circuit that adds positive or negative dc voltage to an input sine wave is called--> clamper
- Q)Consider the following statements: A clamper circuit 1. adds or subtracts a dc voltage to a waveform 2. does not change the waveform 3. amplifies the waveform Which are correct?--> 1,
- Q)The negative clamper is also called--> The positive peak clamper
- Q)The clamping theorem states that--> $A_f/A_r=R_f/R$
- Q)If the transistor is indeed in saturation, the following condition must be satisfied--> i_B>i_c/hfe(min)
- Q)Clipping circuits are also referred to as--> slicers
- Q)A diode shunt clipper is required to clip off the input which is exactly above 4.6v. The diode has $V\gamma=0.6v$. The value of reference voltage (V_R)must be--> 4V
- Q)When the emitters of two identical transistors are coupled, we get--> double ended clipper
- Q)The circuit which converts sinusoidal wave form into square under some special condition is--> Clamper
- Q)The disadvantage of shunt clipper--> Round shaped edges of input waveform
- Q)A voltage doubler circuit is fed by a voltage Vm Sin ωt . The output voltage will be nearly 2 Vm only if--> load resistance is large
- Q)A comparator is a basic building block in a system used to analyze the ------ distribution of noise generated in active device--> Amplitude
- Q)Clamping circuits are used to--> Fix the expremity of the waveform at some level
- Q)A circuit which clamps the negative peak of a 10V sinusoidal signal to +3V level is called-->
 Biased positive clamping circuit
- Q)In positive clamping, the entire input waveform appears--> Above reference level
- Q)In clamping Circuits the capacitors are--> Essential
- Q)An example of a non generative feedback comparator is a _____--> Clipping circuits
- Q)In clipping circuits, the capacitors are--> unavoidable
- Q)A Clipping circuit will not consist of the following element--> Capacitors
- Q)In the break region of a clipping circuit the diode behaves as an--> **Neither fully ON nor fully OFF**
- Q)The circuit which is used to mark the instant when an arbitrary waveform attains some reference level is called--> comparator
- Q)Regenerative comparators employ feedback--> Positive feedback
- Q)The application of voltage comparator--> phase meter
- Q)Regenerative comparators are--> Schmitt trigger
- Q)The clamping circuit theorem is specifically based on the following principle--> Charge gained in the forward interval is equal to the charge lost in the reverse interval under steady-state conditions
- Q)The dc component inserted by the diode clamping circuit in its input is--> Need not be equal to the dc component lost by input prior to clamping
- Q)In the transistor clipping circuit, the transistor is operated in its--> either in cutoff or saturation region or in both regions

- Q)It is difficult to clamp the following waveform in the diode clamping circuit--> A train of narrow pulses
- Q)Transfer characteristics is--> a graph of input voltage and output voltage
- Q)A double peak limiting circuit employs--> Two zener diodes
- Q)What is the effect of the diode capacitance on the output in a parallel diode clipping circuit?--
- > Sharp edges of the input waveform are rounded off
- Q)Application of parallel-diode noise clipping circuit--> Removes the noisy portions at the positive and negative peaks of the input waveform
- Q)In a multi diode circuit containing n diode the following statement is not correct:--> The circuit has n realizable states
- Q)Emitter coupled transistor clipping circuit is employed--> For clipping both extremities of the input waveform
- Q)The attenuation introduced by a diode clamping circuit can be clearly observed by watching the output of the circuit due to a--> Ramp waveform
- Q)In a diode clamping when the source resistance Rs is equal to zero, the consequence--> The magnitude of discontinuity in the output is always equal to magnitude of discontinuity in the input
- Q)The transient response of a diode clamping circuit can be conveniently studied by feeding a--> A square wave input
- Q)In a diode clamping circuit with resistor R across the diode, the purpose of R is--> To provide a discharge path when input amplitude decreases
- Q)A voltage tripler circuit uses--> 3 diodes and 3 capacitors
- Q)The following device can be treated as self activated switch--> Diode

Q)What best describes the circuit?


- Q)The external resistance R in a series or shunt clipper is given by--> $R = \sqrt{RrXRf}$
- Q)zener diode has ----- temperature coefficient--> Only NEGITIVE

Q)Determine the peak value of the output waveform.

15V

Q)What is the voltage measured from the negative terminal of C4to the negative terminal of the

transformer?

--> -20V

- Q)A semiconductor switch can be treated as--> Self activated switch
- Q)Reverse saturation current of diode to can be measured--> With an ammeter with large internal resistance
- Q)A dynamic resistance of a diode is defined as--> $R_d = \frac{\Delta V}{\Delta I}$
- Q)Transition capacitance of diode is given as--> b) $\lambda/(V^n)$
- Q)In the diode the time required for minority charge carriers to move into the other side of the
- PN junction and become majority charge carrier is called--> Storage time
- Q)which of the following is the fastest switching device--> BJT
- Q)The capacitance which appears across a reverse biased junction of a diode is called-->
 Transition capacitance
- Q)A transistor switch with an inductive load functions more like an--> Differentiator
- Q)Smallest times between two successive triggers is _____--> Restoring time
- Q)The Vce (sat) of Si n-p-n transistor at 27° c is--> 0.3 v
- Q)The following device is not a controlled switch--> Diode
- Q)For an ideal p-n junction diode the current l=lo ($e^{V/\eta Vt}$ -1) than what is the value η for Ge--> 1
- Q)Turn off time of the transistor is--> toff =ton +ts
- Q)The Vce of the n-p-n transistor is--> 0.1v
- Q)A large signal approximation which often leads to a sufficient accurate solution is the representation--> Piecewise linear
- Q)At constant base and collector current forward B-E voltage has typical temperature sensitivity in the range of--> -1.5 V/c to -2. m V/c
- Q)If the VCB of n-p-n transistor in CE configuration is negative when the transistor is in--> Saturation region
- Q)When does the transistor act as a closed switch--> both junctions are forward biased
- Q)When does the transistor act as open switch--> both junctions are reverse biased
- Q)In a transistor leakage current mainly depends on--> temperature
- Q)The maximum reverse biasing voltage which may be applied before breakdown between collector and base terminals is--> BV_{CBO}
- Q)A transistor in CE configuration is said to be in cut-off when--> Vce<Vcc
- Q)The minority carrier concentration at the p-n junction are computed by making use of the--> law of the junction
- Q)The gain of a transistor switch is--> Not defined
- Q)The base width in a junction transistor is deliberately chosen small so that--> to reduce the recombination of injected minority carriers
- Q)A transistor switch with capacitive load functions more like an--> Integrator

Q)A transistor cannot function as a switch when it is in--> Active region Q)A clamping diode is used in a transistor switch to--> Limit collector voltage Vce Q)The time which elapses between the instant when the stored minority charge becomes zero and the time when the diode has nominally recovered is called--> b)Transition time Q)The time required for the stored minority charge to become zero after the application of the reverse voltage is called--> Storage time Q)The h_{FE} of a transistor _____ with temperature--> **b)Decreases** Q)In charge control model of a semiconductor diode, the diode operation is offered employing the--> minority carrier concentration across the diode Q)In a semiconductor material, electrons are dislodged from their covalent bonds--> Due to raise in temperature Q)Diodes which are designed with adequate power dissipation capabilities to operate in the breakdown region may be employed as--> voltage reference Q)In fast switching circuits must be kept small--> Load resistor Q)Name the logic family which can always be Wire-Ored--> DTL Q)The fastest logic family is--> ECL Q)The ECL can be used to switch frequencies as high as--> 500MHz Q)The sum of the delay time and rise time is called--> b) Turn ON Q)The sum of the storage time and the fall time of a transistor is called the--> Turn OFF Q)Differential signals are used in the following logic family--> TTL Q)Complementary output is available in which of the following logic families--> ECL Q)The number of inputs the gate is designed to handle is called--> fan-in Q)The logic family which has highest noise margin--> d)CMOS Q)The logic family with both logic levels negative is--> ECL Q)The TTL circuit acts as a current source in the--> b)high state Q)Which of the following logic family is called TRISTATE gate--> TTL Q)The cost of Schottky clamped TTL is--> average

Q)Fan-in for a TTL gate is given by--> 8