
- Q)The axis of spin, precession and gyroscopic couple are contained in--> Three mutually perpendicular axes
- Q)An aero plane is in space, let the propeller be rotating in clock-wise direction when viewed from the rear end. Now the aero plane is taking a right turn. The active gyroscopic couple tends to--> raise the nose and lower the tail
- Q)The magnitude of angular velocity of rotating body is specified by--> length of vector
- Q)The active gyroscopic couple is represented by ω_p = angular velocity of precession ω = angular velocity of precession--> $\mathbf{I} \omega \omega_p$
- Q)The gyroscopic acceleration is given by--> $\omega \delta\theta/\delta t$
- Q)The total reaction of ground on the wheels of a vehicle due to gyroscopic couple and centrifugal force while negotiating curve is--> increased on outer wheels and decreased on inner wheels
- Q)The gyroscopic couple is introduced in a ship whose spin axis is parallel to star board, when it is--> pitching
- Q)When a ship travels in sea, which of the following effects is more dangerous--> pitching Q)An aero plane is in space, let the propeller be rotating in clock-wise direction when viewed from the rear end. Now the aero plane is taking a right turn. The reactive gyroscopic couple tends to--> raise the tail and lower the nose
- Q)An aero plane is in space; let the propeller be rotating in counter clock-wise direction when viewed from the rear end. Now the aero plane is taking a right turn. The active gyroscopic couple tends to--> raise the tail and lower the nose
- Q)An aeroplane is in space, let the propeller be rotating in clock-wise direction when viewed from the rear end. Now the aeroplane is taking a right turn. The reactive gyroscopic couple tends to--> raise the nose and lower the tail
- Q)Steering of a ship means--> turning of a complete ship in a curve towards right or left, while it moves forward
- Q)The rotor of a ship rotates in clockwise direction when viewed from the stern and the ship takes a left turn. the effect of gyroscopic couple acting on it will be--> to raise the bow and lower the stern
- Q)In order to reduce the total gyroscopic effect on a four wheeler while taking a turn, the engine must be provided with a flywheel which should rotate in _____ direction to that of wheels--> opposite
- Q)The gyroscopic effect in a four wheeler due to rotating parts of the engine, like flywheel is--> $I_e * \omega_e * \omega_p$
- Q)The gyroscopic effect in a four wheeler due to four wheels is--> $I_w * \omega_w * \omega_p$
- Q)A motor car moving at a certain speed takes a left turn in a curved path. If the engine rotates in the same direction as that of wheels, then due to centrifugal force--> The reaction on inner wheels increases and on outer wheels decreases
- Q)For a two force member to be in equilibrium which of the following conditions has to be satisfied--> All the above
- Q)A motor car moving at a certain speed takes a left turn in a curved path. If the engine rotates in the same direction as that of wheels, then due to centrifugal force--> The reaction on inner wheels decreases and on outer wheels increases
- Q)When the pitching of the ship is upwards, the effect of gyroscopic couple acting on it will be--

> to move the ship towards star-board
Q)The pitching of the ship produces forces on the bearings which act to the
motion of the ship> horizontally and perpendicular
Q)DAlemberts principle states that> Inertia forces, applied forces, inertia torque and applied
torque keep the body in dynamic equilibrium
Q)Pair of action and reaction forces acting on a body is known as> constraint forces
Q)For a member subjected to four or more forces, to be in equilibrium which of the following
conditions has to be satisfied> Resultant force has to be zero
Q)Planar mechanism means> All the members of the mechanism can be in a series of paralle
planes.
Q)For a three force member to be in equilibrium which of the following conditions has to be
satisfied> Resultant force has to be zero
Q)According to Dalemberts principle, for the dynamic equilibrium of a member> the member
may not be moving with uniform velocity
Q)The angle of inclination of the plane, at which the body begins to move down the plane is
called> angle of friction
Q)A part isolated from the mechanism in equilibrium be in equilibrium> must
be
Q)In static equilibrium the vector sum of all forces acting on a body and all the moments about
point is zero> any arbitrary
Q)If the lines of action of three or more forces intersect at a point, it is known as
> concurrency
Q)The maximum frictional force, which comes into play, when a body just begins to slide over
the other body, is known as> limiting friction
Q)A body will begin to move down the inclined plane, if the angle of inclination of the plane is
the angle of friction> greater than
Q)The friction experienced by two bodies separated by thick layer of lubricant is called> fluid friction
Q)The force of friction always acts in a direction of> opposite to the direction of motion of
the body
Q)The friction experienced by two bodies separated by a thin layer of lubricant is called> skin
friction
Q)The frictional torque transmitted in a flat pivot bearing, considering uniform wear, is> WR
Q)The velocity of rubbing surface with the distance from the axis of the bearing>
increases
Q)The radius of a friction circle for a shaft rotating inside a bearing is> r sin φ
Q)The frictional torque transmitted in a flat collar bearing, considering uniform wear, is> 2/3
W (r ₁ +r ₂)
Q)Which of the following statement holds good for multicollar thrust bearing carrying an axial
thrust of W units?> the intensity of the pressure is not affected by the number of collars.
Q)In a flat collar pivot bearing, the moment due to friction is proportional to> $((r_1^3-r_2^3)/(r_1^2-r_2^2))$
r ₂ ²))
Q)The frictional torque transmitted in a flat pivot bearing with assumption of uniform pressure
is . As compared to uniform wear> more

- Q)The friction transmitted in a flat collar bearing, considering uniform pressure, is--> 2/3 W $((r_1^3-r_2^3)/(r_1^2-r_2^2))$
- Q)The frictional torque transmitted in a truncated conical pivot bearing, considering uniform pressure, is--> 2/3 W cosec $\alpha ((r_1^3 r_2^3)/(r_1^2 r_2^2))$
- Q)The frictional torque transmitted in a truncated conical pivot bearing, considering uniform wear, is--> W cosec α (r_1+r_2)
- Q)The frictional torque transmitted in a conical pivot bearing with assumption of uniform pressure is .. as compared to uniform wear.--> more
- Q)The frictional torque transmitted in a conical pivot bearing, considering uniform pressure, is-- > 2/3 WR cosec α
- Q)The frictional torque transmitted in a conical pivot bearing, considering uniform wear, is--> WR cosec α
- Q)The frictional torque transmitted by a cone clutch is same as that of--> truncated conical pivot bearing
- Q)Which of the following is a transmission dynamometer?--> belt dynamometer
- Q)In a disc clutch, if there are n_1 number of discs on the driving shaft and n_2 number of discs on the driven shaft, then the number of pairs of contact surfaces will be--> n_1+n_2-1
- Q)In a railway axel boxes, the bearing used is--> double row spherical roller bearing
- Q)The frictional torque transmitted by a disc or plate clutch is same as that of--> flat collar bearing
- Q)The stopping distance for a four wheel vehicle is--> all of the above
- Q)The stopping distance for a vehicle by applying brakes when all the four wheels are sliding as compared to when all the four wheels are in a limiting state of sliding is--> more
- Q)Dynamometer is a device used on a prime mover for measuring--> all of the above
- Q)The flywheel influences the--> cyclic variation in speed of the prime mover
- Q)Which of the following is an absorption dynamometer?--> all of the above
- Q)The net effect of creep in belt is to--> decrease the speed of driven pulley
- Q)The following dynamometer is widely used for absorption of wide range of power at wide range of speed--> hydraulic
- Q)For maximum power to be transmitted by belt drive, the ration of centrifugal tension to effective tight side tension is--> 1/2
- Q)The apparent coefficient of friction for V-belt is--> /sinß
- Q)For maximum power to be transmitted by belt drive, the ration of centrifugal tension to permissible tension is--> 1/3
- Q)The static friction--> all of the above
- Q)Which of the following statement regarding laws governing the friction between dry surfaces are correct?--> all of the above
- Q)The dynamics friction is the friction experienced by a body, when the body--> is in motion
- Q)The equivalent radius of block brake is--> $4r \sin(\theta/2)/(\sin\theta+\theta)$
- Q)The acceleration of a piston in a reciprocating steam engine is given by _____, Where x is displacement, r is radius of crank, θ is the angle turned through from inner dead centre, n is

the ratio of length of connecting rod to the radius of crank.--> $\frac{a = r\omega^2 \left[\cos\theta + \frac{\cos 2\theta}{n}\right]}{n}$

Q)When the crank is at the inner dead centre, in a reciprocating steam engine the velocity of piston will be> zero
Q)The velocity of a piston in a reciprocating steam engine is given by, Where x is
displacement, r is radius of crank, θ is the angle turned through from inner dead centre, n is the ratio of length of connecting rod to the radius of crank> $V = r\omega \left[\sin \theta + \frac{\sin 2\theta}{2n} \right]$
ratio of length of confidenting fou to the radius of craffk>
Q)The inertia force is equal to accelerating force in magnitude, but opposite in direction. This is given by> DAIemberts principle
Q)The displacement of a piston in a reciprocating steam engine is given by, Where
is displacement, r is radius of crank, θ is the angle turned through from inner dead centre> x r(1-cos θ)
Q)In a reciprocating steam engine, when the crank has turned through from inner dead centre $\frac{\omega^2 \sin \theta \left\{n^2 - 1\right\}}{2}$
through an angle θ , the angular acceleration of connecting rod is> $\frac{(n^2-\sin^2\theta)^{3/2}}{(n^2-\sin^2\theta)^{3/2}}$
Q)In a reciprocating steam engine, when the crank has turned through from inner dead centre مع مع دمع في المحالية ال
through an angle θ , the angular velocity of connecting rod is> $\frac{[n^2-\sin^2\theta)^{1/2}]}{[n^2-\sin^2\theta)^{1/2}}$
Q)When the crank is at mid position, in a reciprocating steam engine the acceleration of piston is> minimum
Q)When the crank is at mid position from inner dead centre, in a reciprocating steam engine
the velocity is> maximum
Q)When the crank is at the inner dead centre, in a reciprocating steam engine the velocity is $a = r\omega^2 \left[1 + \frac{1}{n}\right]$
Q)The essential condition of placing two masses, so that the system becomes dynamically
equivalent is, where L_1 and L_2 = Distance of two masses from centre of gravity of the body and k_G = Radius of gyration of the body> $L_1 L_2 = k_G^2$
Q)The inertia force of a connecting rod in a reciprocating steam engine is given by,
where m = mass of connecting rod, r = radius of crank, ω is angular velocity of connecting rod, $mr\omega^2 \left[\cos\theta + \frac{\cos 2\theta}{r}\right]$
is the angle turned through from Inner dead centre>
Q)A rigid body, under the action of external forces, can be replaced by two masses placed at a
fixed distance apart. The two masses form an equivalent system, if> All the above
Q)The Kleins diagram is useful to find> Acceleration of various parts
Q)The Kleins diagram is useful when> The crank has uniform angular velocity
Q)The turning moment diagram is a plot of $_{}$, where T is the Net torque, θ is the angle
turned through from Inner dead centre, β is the orientation of connecting rod with line of
stroke, $F = Net$ force on the piston, $r = radius$ of crank> T vs θ
Q)In a four stroke I.C. engine, the purpose of flywheel is to> store the energy in a particular
cycle of operation
Q)The maximum fluctuation of energy is the> difference of maximum and minimum energies
Q)The turning moment on the crank shaft of a reciprocating IC engine is given by,
where F = net force on piston, r = radius of crank, ω is angular velocity of connecting rod, θ is $F r \left\{ \sin \theta + \frac{\sin 2\theta}{2\sqrt{(n^2 - \sin^2 \theta)}} \right\}$
the angle turned through from Inner dead centre>

