- Q)Find the output voltage of an ideal op-amp. If V_1 and V_2 are the two input voltages--> V_0 = $A(V_1-V_2)$
- Q)How will be the output voltage obtained for an ideal op-amp?--> Amplifies the difference between the two input voltages
- Q)An ideal op-amp requires infinite bandwidth because--> Signals can be amplified without attenuation
- Q)Ideal op-amp has infinite voltage gain because--> To obtain finite output voltage

- Q)Determine the output from the following circuit phase with input signal
- Q)Which of the following electrical characteristics is not exhibited by an ideal op-amp?-->
 Infinite output resistance
- Q)What is the purpose of differential amplifier stage in internal circuit of Op-amp?--> Cancel common mode signal
- Q)Which of the following is not preferred for input stage of Op-amp?--> Cascaded DC amplifier
- Q)What will be the emitter current in a differential amplifier, where both the transistor are biased and matched? (Assume current to be $II_E = I_Q/2$
- Q)The purpose of level shifter in Op-amp internal circuit is to--> Adjust DC voltage
- Q)How a symmetrical swing is obtained at the output of Op-amp--> Providing amplifier with positive& negative supply voltages
- Q)Which factor determines the output voltage of an op-amp?--> Both positive and negative saturation voltage
- Q)Which is not the internal circuit of operational amplifier?--> Clamper
- Q)Change in value of common mode input signal in differential pair amplifier make--> Change in voltage across collector
- Q)Find collector current I_{C2} , given input voltages are $V_1=2.078v$ & $V_2=2.06v$ and total current

 $I_Q=2.4$ mA. (Assume $\alpha=1$)

- Q)At what condition differential amplifier function as a switch--> 4VTK Vd< -4VT
- Q)For $V_d > 4V_T$, the function of differential amplifier will be--> Limiter
- Q)Define total current (I_Q) equation in differential amplifier with constant current bias current--> I_Q=1/R₃(VEER₂/R₁+R₂)
- Q)Constant current source in differential amplifier is also called as -> Current Mirror
- Q)When will be the mirror effect valid--> $\beta \gg 1$
- Q)What is the purpose of diode in differential amplifier with constant current circuit?--> Total current independent on temperature
- Q)If the value of Common Mode Rejection Ratio and Common Mode Gain are 40db and -0.12 respectively, then determine the value of differential mode gain--> 4.8
- Q)To increase the value of CMRR, which circuit is used to replace the emitter resistance Re in differential amplifier?--> Constant current bias
- Q)What will be the overall gain in Darlington circuit, if the individual transistor gain is 200?-->
- Q)To increase the input resistance in differential amplifier, replace the transistor by-->

Darlington pair

- Q)What is the drawback in using Darlington pair in differential amplifier?--> High offset voltage
- Q)Determine the amount of shift happens in level shifter?--> -0.7v
- Q)A widlar current source is used--> to get low value of current
- Q)Determine the early voltage, if the output resistance is $2.52k\Omega$ and input current is 2mA--> 10v
- Q)In practical application of current mirror, early voltage is assumed to be--> Infinite
- Q)The input voltage of a difference amplifier is 2.5v and 4.9v. If the transconductance is $0.065\Omega^{-1}$, determine the load current entering the next stage--> **0.156A**
- Q)What is the need for level shifter in operational amplifier?--> Limits the output voltage
- Q)Limitation of an output stage amplifier, if it emitter follower with complementary transistor--
- > Cross-over distortion

Q)Find the disadvantage in the following circuit diagram:

--> Voltage get attenuated by R2

- Q)Which circuit is used as active load for an amplifier--> Current Mirror
- Q)introducing FET differential amplifier pair at the input stage of differential amplifier produces--> **High input resistance**
- Q)Why active load is used in amplifier to obtain large gain in intermediate stage of amplifier?-->

 To obtain a very large voltage gain
- Q)Compute the output voltage if the input voltage is reduced to zero in differential amplifier with one op-amp?--> Cannot be determined
- Q)Find the value of input resistance for differential amplifier with one op-amp. If $R_1 = R_2 = 100\Omega$ and $R_F = R_3 = 5k\Omega$.--> $R_{IFx} = 100\Omega$; $R_{IFy} = 5.1k\Omega$
- Q)The bandwidth of the differential amplifier increases, if the value of--> Closed loop voltage gain decreases
- Q)Where does the compensating network connected in an inverting amplifier.--> Non-inverting input terminal
- Q)Why closed loop differential amplifiers are difficult to null?--> Due to compensating network
- Q)What is the net output voltage for differential amplifier with one op-amp--> $V_0 = -(R_F/R_1)^*(V_x V_y)$
- Q)How the value of output offset voltage is reduced in closed loop op-amp?--> By reducing gain
- Q)µA741 is a single op-amp and available as an--> 8-pin DIP
- Q)how many IC technologies has been developed--> 2
- Q)The output voltage of an open-loop differential amplifier is equal to--> Product of voltage gain and the difference between the two input voltages
- Q)How does the operation op-amp configuration classified?--> Based on the input applied
- Q)What is the final stage in IC fabrication--> metallization
- Q)Voltage follower is also called as--> Non-inverting amplifier
- Q)An option can be modeled as--> voltage controlled voltage source
- Q)Compute $R_{\rm F}$ for an inverting amplifier with feedback, where the value of input resistance of op-amp is $4.7 {\rm k}\Omega$.--> $4.7 {\rm k}\Omega$
- Q)LSI means--> 300 to 3000 gates/chip
- Q)VLSI means--> more than 3000gates/chip
- Q)SSI means--> 3 to30gates/chip
- Q)MSI means--> 30 to 300gates/chip
- Q)Ideal vale of Av of IC 741 is--> ∞
- Q)Ideal vale of PIV of IC 741 is--> 0

Day2 Linear IC Applications ECE

- Q)IC 741 available in--> 8-pin
- Q)The closed loop voltage gain is reciprocal of--> Gain of the feedback circuit
- Q)Ideal vale of RI of IC 741 is--> ∞
- Q)Ideal vale of Ro of IC 741 is--> 0
- Q)Find the input and output voltage in voltage follower circuit?--> Vin=9v and Vout= 9v
- Q)Ideal value of CMRR is--> ∞
- Q)Op-amp block diagram contains how many difference amplifiers--> 1
- Q)If the feedback voltage and the output voltage are given as 10v and 4v. Find the gain of the feedback circuit in voltage-series feedback amplifier?--> 2.5v
- Q)How is the difference voltage calculated in closed loop non-inverting amplificates Via Vin Vi
- Q)Inverting op-amp out put voltage is wrt to input--> in phase
- Q)In non inverting terminal input out put voltages--> 180
- Q)In which configuration does the op-amp function as a high gain amplifier?--> All of the mentioned
- Q)What is the purpose of differential amplifier stage in internal circum of Optamp?--> Cancel common mode signal
- Q)Sine wave is converted in to squre wave which application of openme is--> Schmitt trigger
- Q)How a symmetrical swing is obtained at the output of Op-amp--> Providing amplifier with positive& negative voltage
- Q)The diffrance amplifier output voltage is--> Vo V
- Q)The three in put summer out put voltage of 1C 741 is -> v0+v1+v1
- Q)Which is not the internal circuit of operational amplifier?--> Clamper
- Q)The purpose of level shifter in Op-amprinternal circuit is to--> Adjust DC voltage

$$V_o = -\left(\frac{R_f}{R_2} V_2 - \frac{R_f}{R_3} \frac{R_f}{R_1} V_1\right)$$

--> 6.12mv

Q)How many op-amps are required to implement this equation?

2

Q)How many op-amps are required to implement this

$$V_{o} = \frac{R_{3}}{R_{1} + R_{3}} \quad \frac{R_{2} + R_{4}}{R_{2}} \quad V_{1} - \frac{R_{4}}{R_{2}} \quad V_{2}$$
--> 1

- equation?
- Q)Full wave rectiver PIV voltage is--> 2Vm
- Q)In op-amp will act as a integrator which elements are present--> resistor
- Q)IC 741 op-amp is which type package--> DIP
- Q)MSI means > 30 to 300gates/chip
- Q)LSI means > 300 to 3000 gates/chip
- Q)How many op-amps are required to implement this

equation?
$$V_{o} = \frac{R_{3}}{R_{1} + R_{3}} \frac{R_{2} + R_{4}}{R_{2}} V_{1} - \frac{R_{4}}{R_{2}} V_{2} - > 1$$

Q)Calculate the output voltage.

Q)Calculate the input voltage for this circuit if $V_o = 11 \text{ V}$.

1.1v

- Q)An example of an instrumentation circuit is a(n) _____.--> All of the above
- Q)How many op-amps are required to implement this

$$V_0 = -\left(\frac{R_f}{R_1} V_1 + \frac{R_f}{R_2} V_2 + \frac{R_f}{R_3} V_3\right)$$

equation?

- Q)A comparator is an example of a(n)--> nonlinear circuit
- Q)In an averaging amplifier, the input resistances are--> greater than the feedback resistance

Q)Calculate the output voltage if $V_1 = V_2 = 0.15 \text{ V}$.

6.45V

Q)Determine the output voltage for this circuit with a sinusoidal input of 2.5

Q)How many op-amps are required to implement this equation? $V_o = V_1 --> 1$

Q)Determine the output voltage when $V_1 = V_2 = 1 \text{ V}$.

Q)A digital-to-analog converter is an application of the--> scaling adder 💎

Q)Calculate the output voltage if $V_1 = 0.2 \text{ V}$ and $V_2 \Rightarrow 0.4 \text{ V}$

--> 2v

- Q)A basic series regulator has--> both an error detector and a reference voltage
- Q)Calculate the output voltage for this circuit when V_1 = 2.5 V and V_2 = 2.25

Q)The ramp voltage at the output of an op-amp integrator--> increases or decreases at a linear rate

- Q)Circuits that shift the dc level of a signal are called--> clampers
- Q)Why open-loop op-amp configurations are not used in linear applications?--> Output switches between positive and negative saturation
- Q)What happen if any positive input signal is applied to open-loop configuration?--> Output reaches saturation level
- Q)A zero-level detector is a--> comparator with a trip point referenced to zero
- Q)For the feedback circuit of voltage series feedback amplifier, find the feedback voltage for the specifications: $R_1=1k\Omega$, $R_F=10k\Omega$ and $V_o=25v-->2.3v$

Q)What happens if $R_1 >> R_F$ in the circuit

--> Some amount of

output offset voltage is present

- Q)If the feedback voltage and the output voltage are given as 10v and 4v. Find the gain of the feedback circuit in voltage-series feedback amplifier?--> 2.5v
- Q)How is the difference voltage calculated in closed loop non-inverting amplifier?--> Vid= Vin Vf
- Q)Why the feedback circuit is said to be negative for voltage series feedback amplifier?-->
 Feedback voltage is 180°out of phase with respect to input voltage.
- Q)What is the net output voltage for differential amplifier with one op-amp--> $V_0 = -(R_F/R_1)*(V_x-V_y)$
- Q)Determine the output resistance of differential amplifier with three op-amp. The op-amp used is 741c, with A=200000 and R_o . The output and difference of input voltages are 44 and 11.-> $1.5m\Omega$
- Q)The characteristics of non-inverting amplifier is identical to--> Differential Amplifier with two op-amp
- Q)Why differential amplifiers are preferred for instrumentation and industrial applications?-->
 Reject common mode voltage
- Q)Which of the following is a combination of inverting and non-inverting amplifier?-->
 Differential amplifier with one op-amp
- Q)What will be the output voltage when $V_x=0v$?(Where $V_x>$ inverting input terminal of differential amplifier with one op-amp) $V_0=(1+R_F/R_1)*V_1$
- Q)The difference between the input and output voltage are -1v and 17v. Calculate the closed loop voltage gain of differential amplifier with one op-amp?--> -17
- Q)The gain of differential amplifier with one op-amp is same as that of--> The inverting amplifier
- Q)In which configuration does the op-amp function as a high gain amplifier?--> All of the mentioned
- Q)When the non-inverting input terminal of an op-amp is equal to that of the inverting input terminal--> All of the mentioned
- Q)The bandwidth of a non-inverting amplifier with feedback is equal to--> c) fo(1+A)
- Q)When the input voltage is reduced to zero in a closed loop configuration the circuit acts as--> Inverting and non-inverting amplifier
- Q)The closed loop voltage gain is reciprocal of--> Gain of the feedback circuit