- Q)A VHDL is which type of language--> Hardware language
- Q)Basic components of VHDL code are--> Library ,Entity, Architecture
- Q)A Library is a--> Collection of commonly used piece of code
- Q)A VHDL is simply declaration of a module inputs and outputs--> Entity
- Q)In design flow after computation next stage is--> Simulation/verification
- Q)VHDL is an acronym of--> VHSIC Hardware Description Language
- Q)In VHDL design flow in front-end design steps are--> Hierarchy-coding-compilation-

Simulation/Verification

Q)In VHDL design flow in back-end design steps are--> Fitting/place+route-timing/Verification-Synthesis

- Q)In std_logic_1164: package of the ieee library specifies--> A Multi-level logic system
- Q)In std_logic_1164; std_logic specifies--> 8 levels logic
- Q)In std_logic_1164; std_ulogic specifies--> 9 levels logic
- Q)ieee.std logic 1164, 1164 represents standard logic--> Package
- Q)In VHDL Library syntax--> LIBRARY library_name;
- Q)From the following which one is coreect--> use ieee.std_logic_1164.all;
- Q)A VHDL is a place where VHDL compiler stores information about particular design project including intermediate files.--> Library
- Q)In VHDL library clause the beginning of design files with--> Library ieee;
- Q)From following select VHDL user defined identifiers--> Inhibit, X, Y, Bit, Z etc.
- Q)Package std_logic_1164 of library defines--> Std_logic and Std_ulogic
- Q)Package std_logic_arith of library ieee defines--> Signed and Unsigned
- Q)In VHDL identifiers are--> Basic identifiers and extended identifiers
- Q)Ports is used following syntax--> Entity
- Q)From following select VHDL reserved key words--> Entity, Port, In, Out etc.
- Q)In VHDL Entity syntax--> ENTITY entity_name IS
- Q)In VHDL Architecture syntax--> ARCHITECTURE architecture-name of entity name is
- Q)In VHDL Type declaration -> Type type-name is (value-list);
- Q)In VHDL Subtype declaration--> Subtype subtype-name is type-name start to end;
- Q)in VHDL Signal declaration->> Signal signal-name : signal type;
- Q)Assignment operator in Behavioral--> :=
- Q)From following select VHDL predefined integer types operators--> +, -, /, mod, abs etc.
- Q)From following select VHDL predefined boolean types operators--> And, or, nand, not ect,
- Q)From following select VHDL data objects--> Constant, Signal, Variable, File
- Q)From following select VHDL predefined types--> Bit, Boolean, bit_vector etc
- Q)From the following find the Miscellaneous operators--> Abs, ** etc
- Q)If x=1001010 than sll2 is--> 0101000
- Q)If x=1001010 than rol2 is--> 0101010
- Q)Statement referred in dataflow--> Concurrent
- Q)With select syntax--> With signal name select signal name<= expression when choices;
- Q)From the following find the relational operators--> =, /=, <, <= etc.
- Q)With select syntax--> With expression select signal name<= signal value when choices;
- Q)Assignment operator in Behavioral--> <<
- Q)Concurrent statement is as follows--> Signal signal-name<= expression;

- Q)Key word others used in syntax--> With select
- Q)While loop syntax in behavioral modal--> While Boolean expression loop Sequential statement End loop;
- Q)Syntax of function--> Function function-name (concurrent statements)
- Q)Port MAP syntax is--> Label: Component name port map (signal1, signal2 signal3,.,signal n)
- Q)Is present in between process begin and end process--> Sequential statements
- Q)Applying inputs to A,B not applied to Y in the program write process--> Process (A,B)
- Q)Port map is used in following model--> Structural
- Q)In VHDL Simulation is used for--> Validate assumptions, Verify logic and Verify performance
- Q)Intermediate files that are not used in VHDL are--> Operating systems
- Q)A VHDL is allows you to define and apply inputs to your desired and to observe it outputs-->
 Simulation
- Q)Logic synthesis is a--> Logic Synthesis synthesis of gate-level logic from register-transfer structure or Boolean equations
- Q)To ensure that the design is correct as per the specifications the designer has to write another program known as--> Simulation
- Q)In VHDL modeling types of simulations are--> Logic or switch level, Timing, Circuit and Fault
- Q)Generic constants are declared in--> Entity
- Q)A function executes in minimum simulation time -> Zero
- Q)A may or may not execute in zero simulation time depending on whether it has wait statement or not--> **Procedure**
- Q)To delay a event by 20 ns in VHDL Program which of the following statement should be given--> Wait for 20 ns;
- Q)A function executes in minimum simulation time:--> Zero
- Q)The mechanism makes it possible to simulate the operation of concurrent process even through the simulator runs on single computer with single thread of execution--> Event list
- Q)A VHDL is allows you to define and apply inputs to your desired and to observe it outputs-->
 Simulation
- Q)Following statement in correct time dimension--> Wait or sensitivity:
- Q)Design a synthesis tools used for--> Optimize the gate level description using cell substitution to meet the specified area and timing constraints
- Q)Register-Transfer Synthesis is--> Synthesis of register-transfer structure from abstract, control-flow, or register-transfer behavior
- Q)The automatic generation of data path and control unit is known as high-level synthesis.-->
 Synthesis
- Q)Synthesis may occur at many different levels of abstraction are--> Behavioral level synthesis, Logic synthesis and Layout synthesis
- Q)Synthesis may occur at many different levels of abstraction are--> Behavioral level synthesis, Logic synthesis and Layout synthesis
- Q)Data path is a--> The hardware which stores and performs operations on data
- Q)In VHDL Behavioral synthesis--> To optimize the design at architectural level with constraints for clock, latency and throughput
- Q)In VHDL Logic synthesis--> Automatically converts RTL code into gates without modifying the implied

- Q)In VHDL Verification at different levels of abstraction are--> Behavioral, RTL, gate level and Physical domain
- Q)In VHDL Behavioral verification is--> Describes the intent and the algorithm behind the design without specifying the cycle to cycle behavior
- Q)A gate delay is--> Time for change at input to cause change at output
- Q)The process of mapping an input specification for a hardware design into a hardware implementation--> Hardware Synthesis
- Q)Different types of Logic Synthesis Constraints are--> Synthesis Constraints, timing, area, power and Design Rule Constraints
- Q)From following Logic Synthesis Constraints are--> Timing, area optimization and Limitations of a given implementation technology
- Q)In VHDL model inertial delay is--> Default delay model
- Q)In VHDL model Delta delay is--> Infinitesimally small delay is automatically inserted by the simulator to preserve correct ordering of events
- Q)Critical path is a--> The hardware which stores and performs operations on data
- Q)Type of Delay Models in VHDL are--> Inertial, Transport and delta delays
- Q)Static Timing analysis after Synthesis is called --> Pre-Layout Analysis >
- Q)Static Timing analysis after place and route is called -> Post-Layout Analysis
- Q)Post-Layout Timing simulation Flows are--> Floor planning-Clock Tree Synthesis-Place and Route-Parasitic Extraction-Static Timing Analysis
- Q)In synthesis Optimization Constraints is--> Define timing and area optimization goals for Design Compiler
- Q)In Logic Synthesis power constraints are--> Logic synthesis can generate gating that minimizes the number of transitions during operation
- Q)In Logic Synthesis Design Rule Constraints—> Maximum loading on outputs and Maximum transition time on outputs
- Q)Pre layout simulation Flows are Logic Synthesis- Design For test- Floor planning- Static Timing Analysis
- Q)The advantage of static Timing Simulation is--> Fast, exhaustive
- Q)In timing simulation a point to-point path in a design which can propagate data from one flip-flop to another is called--> A Timing Path
- Q)The advantage of Dynamic Timing Simulation is--> Can be very accurate
- Q)In VHDL Modeling Verification Techniques are--> Simulation, Formal verification and Static Timing Analysis
- Q)A method for determining if a circuit meets timing constraints without having to simulate clock cycle is called--> Static Timing Analysis
- Q)The performance of Static Timing Analysis--> Timing-driven and Gate-level simulation
- Q)Types of Static Timing Verification are--> Dynamic and Static Timing Analysis
- Q)Algorithm Synthesis is--> Synthesis of abstract behavior or control-flow behavior from a high level algorithm description
- Q)A Read only memory is--> Combinational circuit
- Q)A setup time violation is--> When a signal arrives too late, and misses the time when it should advance
- Q)In a timing path Input ports Clock pins of flip-flops are called--> Start point

- Q)In a timing path output ports data input pins of flip-flops--> Endpoints
- Q)In Static Timing Analysis which kinds of timing errors are possible--> Clock period, hold time and setup time violations
- Q)A hold time violation is--> When a signal arrives too early, and advances one clock cycle before it should.
- Q)From following find the volatile memory--> RAM
- Q)Which is the type of memory for information that does not change when power off--> ROM
- Q)For manufacturing of ROM ICs. Which types of Technologies are used--> Bipolar Technology and MOS Technology
- Q)From the expression of 2ⁿ b ROM, b is represent--> Data outputs
- Q)From the expression of 328 ROM, Input addresses are--> 5
- Q)ROM is a--> Nonvolatile memory
- Q)From the expression of 2ⁿ b ROM, 2ⁿ is represents--> Output address
- Q)In a PAL, the AND and OR arrays are--> Programmable AND array and fixed OR array
- Q)In a PLA, the AND and OR arrays are--> AND and OR arrays are programmable
- Q)What does a dot mean when placed on a PLD circuit diagram?--> A point that cannot change
- Q)Which memory is used for storing programs and data currently being processed by the CPU?-
- -> Internal memory
- Q)One Gigabyte equal to--> A Billion
- Q)In a PROM, the AND and OR arrays are--> Fixed AND array and Programmable OR array
- Q)In a PROM, the OR array is--> Programmable
- Q)A programmable array of AND gates that connects to a fixed array of OR gates and is usually called--> PAL
- Q)The basic programmable logic array (PLA) contains a set of _____ gates, ____ gates, and gates.--> NOT, AND, OR
- Q)Each programmable array logic (PAL) gate product is applied to an OR gate and, if combinational logic is desired, the product is ORed and then:--> Sent to an inverter for output Q)From the following find the wrong one--> In a PLA, fixed AND array and Programmable OR array
- Q)The difference between a PLA and a PAL is:--> The PLA has a programmable OR plane and a programmable AND plane, while the PAL only has a programmable AND plane.
- Q)PALs tend to execute --> SOP
- Q)Once a PAL has been programmed--> It cannot be reprogrammed.
- Q)For manufacturing of PROM ICs. Which types of Technologies are used--> Bipolar
- Q)For manufacturing of EPROM ICs. Which types of Technologies are used--> CMOS
- Q)For manufacturing of Mask ROM ICs. Which types of Technologies are used--> NMOS,CMOS
- Q)SPLDs, CPLDs, and FPGAs are all which type of device?--> PLD
- Q)A PAL16L8 has:--> 10 inputs and 8 outputs.
- Q)The content of a simple programmable logic device (PLD) consists of:--> Thousands of basic logic gates and advanced sequential logic functions
- Q)Product terms are the outputs of which type of gate within a PLD array?--> AND
- Q)RAM can be expanded to a--> Increase word number
- Q)The programs which are as permanent as hardware and stored in ROM is known as--> Firmware

- Q)The memory which is programmed at the time it is manufactured--> PROM
- Q)For manufacturing of EEPROM ICs. Which types of Technologies are used--> NMOS
- Q)EEPROM stands for--> Electrically Erasable Programmable Read Only Memory
- Q)EPROM is generally erased by using--> Ultraviolet rays
- Q)The internal structure of PLA is similar to--> ROM
- Q)SRAM used for--> Digital to analog conversion
- Q)SRAM have--> Does not have to be periodically refreshed
- Q)SRAM provides--> Faster access to data
- Q)What is the advantages of Two-Dimensional Decoding--> Reduce the Decoder size
- Q)From the following find the one of the standard SRAM--> HM628128
- Q)Which of the following memories needs refreshing?--> DRAM
- Q)In SRAM data is stored in cross-coupled inverters--> Cross-coupled inverters
- Q)The Access time is slower for--> SRAM and DRAM
- Q)In Synchronous DRAM ,Memory data path width is--> 4 bytes
- Q)For performing read and write operations, Synchronous DRAM requires > Clock
- Q)For the most Static RAM the write pulse width should be at least--> 60ns
- Q)For the most Static RAM the maximum access time is about > 100ns
- Q)Minimum number of transistor required for designing a DRAM--> 1 Transistor
- Q)Minimum number of transistor required for designing a SRAM--> G. 6Transistor

