Subject Code: H2103/R13

M. Tech –II Semester Regular Examinations, September, 2014 FINITE ELEMENT METHOD

(Common to TE, MD, ME, CAD/CAM and AMS)

Max Marks: 60

Time: 3 Hours

Answer any FIVE questions All questions carry EQUAL marks ****

1. A steel rod is attached to rigid walls at each end and is subjected to a distributed load T(x) as shown in figure.

$$E = 30 \times 10^6 \text{ psi}$$
 $A = 2 \text{ in.}^2$

- (a) Write the expression for the potential energy .
- (b) Determine the displacement u(x) using the Rayleigh Ritz method. Assume a displacement field $u(x) = a_0 + a_1 x + a_2 x^2$. Plot u verses x.
- (c) Plot σ versus x
- 2. (a) Write the comparison of Finite element method with other methods.
 - (b) Evaluate the following:
 - (i) Evaluate ξ , N_1 and N_2 at the point P.
 - (ii) If $q_1=0.003$ in and $q_2=-0.005$ in, determine the value of the displacement q at point P.

3. (a) Write the properties of element stiffness matrix.

WWW.MANARESULTS.CO.IN

|"|""||"|||

Subject Code: H2103/R13

(b) In figure, a load $P=60\times10^3$ N is applied as shown. Determine the displacement field, stress and support reactions in the body. Take $E=20\times10^3$ N/mm².

4. For the three bar truss shown in figure, determine the displacements of node 1 and the stress in element 3.

- 5. (a) Explain Hermite shape functions in detail.
 - (b) Find the deflection at the load and the slopes at the ends for the steel shaft shown in figure. Consider the shaft to be simply supported at bearings A and B.

Subject Code: H2103/R13

6. (a) An Axisymmetric body with a linearly distributed load on the conical surface is shown in figure. Determine the equivalent point loads at nodes 2, 4 and 6.

(b)Write a short note on Constant strain triangle (CST).

- 7. Write a short note on the following:
 - (a) Patch test
 - (b) Sub parametric elements
 - (c) H-refinement
- 8. Explain the Eigen value evaluation methods in detail.

WWW.MANARESULTS.CO.IN