Code No: MC1335/R13

MCA III Semester Regular/ Supplementary Examinations, November-2016
DESIGN AND ANALYSIS OF ALGORITHMS
Time: 3 Hours
Max. Marks: 60

Answer Any FIVE Questions
All Questions Carry Equal Marks

1. a Justify the statement "Asymptotically more efficient algorithms are usually the better choice for all but small inputs" with suitable examples of notations.
b What is meant by disjoint set? Explain the applications of disjoint set data structure in terms of connected, bi-connected and minimum spanning trees.
2. a Show that $f(n)+g(n)=O\left(n^{2}\right)$ where $f(n)=3 n^{2}-n+4$ and $g(n)=n \log n+5$
b Explain the control abstraction for divide and conquer with the help of binary search algorithm.
3. a Trace quick sort algorithm for the given array of numbers, also show the tree calls and compute the average time complexity. $2,7,8,3,1,9,5,6,3$
b Write and explain the greedy method with the help of single source shortest path problem.
4. a Discuss the Dynamic programming solution to construct the optimal binary search
b tree for the given data.
$\mathrm{N}=4$, ($\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4)=(\mathrm{do}$, if, int, while) $\mathrm{P}(1,4)=(3,3,1,1)$ and $\mathrm{q}(0,4)(2,3,1,1,1)$
5. a How to solve Knapsack problem with Dynamic programming? How it is different from greedy method?
b Find the shortest path between all pairs of nodes in the following graph $\mathrm{AD}=1, \mathrm{BC}=2, \mathrm{AB}=5, \mathrm{BD}=3, \mathrm{CD}=6, \mathrm{AC}=4$

1 of 2

Code No: MC1335/R13

6. a Write an algorithm for generation of next color in M coloring problem.
b Draw the tree organization of the 4-queen solution space and number the nodes using DFS.
7. a Draw the portion of state space tree generated by LC branch and bound for the
b What is Branch and Bound? Explain its control abstraction.
8. a State and explain the Cook's theorem. How it helps in solving NP-Problems.
b Differentiate between NP-Complete and NP-hard problems.
