Code No: MC1613/R16

MCA I Semester Supplementary Examinations, February-2020
 DISCRETE MATHEMATICAL STRUCTURES AND GRAPH THEORY

Time: 3 Hours
Max. Marks: 60
Answer Any FIVE Questions
All Questions Carry Equal Marks

1. a Show that $P \rightarrow S$ can be derived from the premises $7 P \vee Q, 1 Q \vee R, R \rightarrow S \quad 6 M$
$b \quad$ Prove $\forall x(P(x) \rightarrow R(x)),(\exists x)((P(x) \wedge S(x)) \Rightarrow(\exists x)((R(x) \wedge S(x)) \quad 6 M$
2. a Let R be the following equivalence relation on the set 3M
$\mathrm{A}=\{1,2,3,4,5\}$
$\mathrm{R}=\{(1,1)(1,5)(2,2)(2,3)(2,6)(3,2)(3,3)(3,6)(4,4)(5,1)(5,5)(6,2)(6,3)(6,6)\}$
Find the partition of A induced by R i.e., Find the equivalence class of R
b Show that the lattice $\left(S_{n}, D\right)$ for $n=100$ is isomorphic to the direct product of lattices $5 M$ for $\mathrm{n}=4$ and $\mathrm{n}=25$
c Explain the principles of Pigeon Hole
3. a In how many ways can we select a committee of four Republicans, three Democrats 5 M and two independents from a group of 10 republicans, 12 Democrats and four Independents
b In how many different strings can be made by reordering the letters of the word 4M SUCCESS
c What is the coefficient of $x^{101} y^{99}$ in the expansion of $(2 x-3 y)^{200}$? 3M
4. a Solve the following recurrence relation by substitution method 4M $a_{n}=a_{n-1}+n, n \geq 1$ where $a_{0}=2$
b Solve the recurrence relation $a_{n}-7 a_{n-1}+12 a_{n-2}=0$ for $n \geq 2$ by using method of 4M characteristic roots
c Find an explicit formula for the Fibbonacci numbers

Code No: MC1613/R16

5. a What is the Chromatic number of the graph

b Find the BFS and DFS of the following graph

c Prove that A complete graph K_{n} is planar if and only if $\mathrm{n} \leq 4$
6. a Draw the Hasse diagram of the following lattices

i.	$\left(\mathrm{S}_{36}, \mathrm{D}\right)$
ii.	$\left(\mathrm{S}_{45}, \mathrm{D}\right)$

b Given an argument which will establish the validity of the following inference:
All integers are rational numbers
Some integers are powers of 3
Therefore, Some rational numbers are powers of 3
7. a How many positive integers not exceeding 1000 are divisible by 7 or 11
b Calculate the number of unordered samples with $n=6$ and $k=3$ when
i) Repetition is allowed
ii) Repetition is not allowed
c How many subgraphs with at least one vertex does K_{2} have?
8. a Define Euler Circuit 2M
b Use generating function to solve the following recurrence relation 5M
$a_{0}=2, a_{1}=3, a_{n}=5 a_{n-1}-6 a_{n-2}+7^{n}$ for $n \geq 2$
c Determine the given graphs are Isomorphic or not 5 M

G

