Code No: MC1635/R16

Time: 3 Hours

MCA III Semester Regular/ Supplementary Examinations, Nov/Dec-2019

DESIGN AND ANALYSIS OF ALGORITHMS

Max. Marks: 60

	Answer Any FIVE Questions			
		All Questions Carry Equal Marks		
1.	a	What is frequency counting method? Analyze the time complexities of matrix addition and selection sort using frequency count.	[6M]	
	b	Discuss cost amortization analysis with an example. What is the role of stack in it?	[6M]	
2.	a	How to improve the performance of union and find algorithms through weighted union and collapsing find? Explain algorithms.	[6M]	
	b	Can we solve a problem with non-polynomial time complexity? Discuss various methods for it.	[6M]	
3.	a	Find out the optimal ordering of job execution for the given $n=5$, $(p1p5)=(20, 15, 10, 25, 18)$ and $(d1d5)=(2,3,1,2,3)$ with the help of greedy jobs algorithm	[6M]	
	b	Differentiate the working principle of Prim's and Kruskal's algorithms in generating minimum cost spanning trees.	[6M]	
4.	a	Strassen's matrix multiplication reduces the time complexity of conventional matrix multiplication. How? Show with derivation of time complexity.	[6M]	
	b	Trace merge sort algorithm for the given array of numbers, also show the tree calls and compute the average time complexity.31, 19, 23, 25, 57, 48, 37, 12,92, 25, 86,33	[6M]	
5.	a	What is principle of optimality? How it is used in dynamic programming to solve optimization problems.	[6M]	
	b	Generate the optimal solution for 0/1 Knapsack problem when n=4, m=25 $(w1,w2,w3,w4)=(8,10,5,7)$ and $(p1,p2,p3,p4)=(2,5,8,1)$	[6M]	
6.	a	What is travelling sales person problem? Show that the time complexity of it is $O(n^22n)$ and space complexity is $O(n^2n)$ using dynamic programming	[6M]	
	b	Find out the shortest path between all pairs of nodes in graph G with at least 3 nodes.	[6M]	
7.		Write Recursive backtracking algorithm? Explain how it is used to solve sum of sum of subsets problem when $m=30 \text{ w}=\{5,8,10,7,14,16,20\}$ by drawing the portion of state space tree.	[12M]	
8.	a	What is the role of Least Cost function in branch bound? Explain in detail with control abstraction and example.	[6M]	
	b	Generate FIFO-Branch and Bound solution for the given knapsack problem. $n=5$ (p1p5)=(9,15,10,6,4) (w1w5)=(4,6,5,3,3) and m=15 *****	[6M]	