Code No: MC1635/R16

MCA III Semester Regular/ Supplementary Examinations, Nov/Dec-2019 DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours
Max. Marks: 60

Answer Any FIVE Questions All Questions Carry Equal Marks

1. a What is frequency counting method? Analyze the time complexities of matrix addition and selection sort using frequency count.
b Discuss cost amortization analysis with an example. What is the role of stack in it?
2. a How to improve the performance of union and find algorithms through weighted union and collapsing find? Explain algorithms.
b Can we solve a problem with non-polynomial time complexity? Discuss various methods for it.
3. a Find out the optimal ordering of job execution for the given $n=5$, (p1..p5) $=(20,15$, $10,25,18)$ and $(\mathrm{d} 1 \ldots \mathrm{~d} 5)=(2,3,1,2,3)$ with the help of greedy jobs algorithm
b Differentiate the working principle of Prim's and Kruskal's algorithms in generating minimum cost spanning trees.
4. a Strassen's matrix multiplication reduces the time complexity of conventional matrix multiplication. How? Show with derivation of time complexity.
b Trace merge sort algorithm for the given array of numbers, also show the tree calls and compute the average time complexity. $31,19,23,25,57,48,37,12,92,25$, 86,33
5. a What is principle of optimality? How it is used in dynamic programming to solve optimization problems.
b Generate the optimal solution for $0 / 1$ Knapsack problem when $n=4, m=25$ $(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4)=(8,10,5,7)$ and (p1,p2,p3,p4)=(2,5,8,1)
6. a What is travelling sales person problem? Show that the time complexity of it is $\mathrm{O}\left(\mathrm{n}^{2} 2 \mathrm{n}\right)$ and space complexity is $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{n}\right)$ using dynamic programming
b Find out the shortest path between all pairs of nodes in graph G with at least 3 nodes.
7. Write Recursive backtracking algorithm? Explain how it is used to solve sum of sum of subsets problem when $\mathrm{m}=30 \mathrm{w}=\{5,8,10,7,14,16,20\}$ by drawing the portion of state space tree.
8. a What is the role of Least Cost function in branch bound? Explain in detail with control abstraction and example.
b Generate FIFO-Branch and Bound solution for the given knapsack problem. n=5
